Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10030
Number of page(s) 5
DOI https://doi.org/10.2971/jeos.2010.10030
Published online 05 July 2010
  1. B. C. Wilson, and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy” Phys. Med. Biol. 53, R61–R109 (2008). [NASA ADS] [CrossRef] [Google Scholar]
  2. D. A. Benaron, “The future of cancer imaging” Cancer Metast. Rev. 21, 45–78 (2002). [CrossRef] [Google Scholar]
  3. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm” Phys. Med. Biol. 48, 13–27 (2003). [NASA ADS] [Google Scholar]
  4. L. H. Wang, S. L. Jacuues, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues” Comput. Meth. Prog. Bio. 47, 131–146 (1995). [CrossRef] [Google Scholar]
  5. X. X. Guo, M. F. G. Wood, and A. Vitkin, “Monte Carlo study of path length distribution of polarized light in turbid media” Opt. Express 15, 1348–1360 (2007) [NASA ADS] [CrossRef] [Google Scholar]
  6. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optics cladding method” Appl. Opt. 28, 2297–2303 (1989). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. Knüttel, and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography” J. Biomed. Opt. 5, 83–92 (2000). [CrossRef] [Google Scholar]
  8. G. H. Meeten, and A. N. North, “Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle” Meas. Sci. Technol. 6, 214–221 (1995). [CrossRef] [Google Scholar]
  9. Y. Räty, E. Keräneny, and K.-E. Peiponen, “The complex refractive index measurement of liquids by a novel reflectometer apparatus for the UV–visible spectral range” Meas. Sci. Technol. 9, 95–99 (1998). [CrossRef] [Google Scholar]
  10. H. Li, and S. S. Xie, “Measurement method of the refractive index of biotissue by total internal reflection” Appl. Opt. 35, 1793–1795 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  11. H. Ding, J. Q. LU, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm” Phys. Med. Biol. 51, 1479–1489 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  12. Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection” Phys. Med. Biol. 51, N371–379 (2006). [CrossRef] [Google Scholar]
  13. P. Sun, and Y. Wang, “Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm” Opt. Laser Technol. 42, 1–7 (2010). [NASA ADS] [CrossRef] [Google Scholar]
  14. X. Wang, and L. V. Wang, “Propagation of polarized light in birefringent turbid media: time-resolved simulations” Opt. Express. 9, 254–259 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  15. X. Wang, and L. V. Wang, “Propagation of polarized light in bire-fringent turbid media: A Monte Carlo study” J. Biomed. Opt. 7, 279–290 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  16. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography” Opt. Lett. 22, 934–936 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  17. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography” Appl. Opt. 37, 6026–6036 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  18. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography” Opt. Express. 9, 780–790 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  19. B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography” Appl. Opt. 45, 4464–4479 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  20. X. Y. Ma, J. Q. Lu, and X. H. Hu, “Effect of surface roughness on determination of bulk tissue optical parameters” Opt. Lett. 28, 2204–2206 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  21. V. V. Tuchin, “Immersion effects in tissues” Proc. SPIE 4162, 1–19 (2000). [CrossRef] [Google Scholar]
  22. M. Born, and E. Wolf, Principles of Optics pp. 823–826 (London University Press, London, 1999). [Google Scholar]
  23. J. C. Lai, Z. H. Li, C. Y. Wang, and A. Z. He, “Experimental measurement of the refractive index of biological tissues by total internal reflection” Appl. Opt. 44, 1845–1849 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.