Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 5, 2010
Article Number 10011
Number of page(s) 9
DOI https://doi.org/10.2971/jeos.2010.10011
Published online 06 April 2010
  1. H. Herzig, Micro Optics (Taylor & Francis, London, 1997). [CrossRef] [Google Scholar]
  2. S. Sinzinger, and J. Jahns, Microoptics (Wiley-VHC, Weinheim, 1999). [Google Scholar]
  3. B. Kress, and P. Meyrueis, Digital Diffractive Optics (John Wiley & Sons, Chichester, 2000). [Google Scholar]
  4. H. Kim, K. Choi, and B. Lee, “Diffractive optic synthesis and analysis of light fields and recent applications” Jpn. J. Appl. Phys. 45, 6555–06575 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  5. U. D. Zeitner, M. Banasch, and E.-B. Kley, “The making of a computer-generated hologram” Photon. Spectra 42, 58–61 (2008). [Google Scholar]
  6. L. P. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device” IBM J. Res. Dev. 13, 1503–155 (1969). [Google Scholar]
  7. A. J. Caley, M. Braun, A. J. Waddle, and M. R. Taghizadeh, “Analysis of multimask fabrication errors for diffractive optical elements” Appl. Opt. 46, 2180–2188 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  8. D. C. O’Shea, J. W. Beletic, and M. Poutus, “Binary-mask generation for diffractive optical elements using microcomputers” Appl. Opt. 32, 2566–2572 (1993). [CrossRef] [Google Scholar]
  9. K. S. Urquhart, R. Stein, and S. H. Lee, “Computer-generated holograms fabricated by direct write of positive electron-beam resist” Opt. Lett. 18, 308–310 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  10. M. J. Verheijen, “E-beam lithography for digital holograms” J. Mod. Optic. 40, 711–721 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  11. H. C. Bolstad, T. Yatagai, and M. Seki, “Optimization of phase-only computer-generated holograms using an ion-exchange process” Opt. Eng. 31, 1259–1263 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  12. M. Flury, A. Benatname, P. Gérad, P. C. Montgomery, J. Fontaine, T. Engel, J. P. Schunck, and E. Fogarassy, “Excimer laser ablation lithography applied to the fabrication of reflective diffractive optics” Appl. Surf. Sci. 208, 238–244 (2003). [CrossRef] [Google Scholar]
  13. M. T. Flores-Arias, A. Castelo, C. Gómez-Reino, and G. F. de la Fuente, “Phase diffractive optical grating on glass substrates by laser ablation” Opt. Commun. 282, 1175–1178 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  14. I. Moreno, C. Gorecki, J. Campos, and M. J. Yzuel, “Comparison of computer generated holograms produced by laser printers and lithography. Application to pattern recognition” Opt. Eng. 34, 3520–3525 (1995). [CrossRef] [Google Scholar]
  15. C. Iemmi, S. Ledesma, J. Campos, and M. Villareal, “Gray-level computer-generated hologram filters for multiple-object correlation” Appl. Opt. 39, 1233–1240 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  16. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed onto a restricted phase-mostly modulation display” Appl. Opt. 43, 6278–6284 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  17. A. W. Lohmann, and D. P. Paris, “Binary Fraunhofer holograms, generated by computer” Appl. Opt. 6, 1739–1748 (1967). [NASA ADS] [CrossRef] [Google Scholar]
  18. Y.-C. Chang, P. Zhou, and J. H. Burge, “Analysis of phase sensitivity for binary computer-generated holograms” Appl. Opt. 45, 4223–4234 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. P. Zhou, and J. H. Burge, “Fabrication error analysis and experimental demonstration for computer generated holograms” Appl. Opt. 46, 657–663 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  20. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters” Opt. Eng. 39, 1612–1619 (2000). [CrossRef] [Google Scholar]
  21. S. Sinzinger, and V. Arrizón, “High-efficient detour-phase holograms” Opt. Lett. 22, 928–930 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  22. C. Haupt, M. Pahlke, R. Krupka, and H. J. Tiziani, “Computer-generated microcooled reflection holograms in silicon for material processing with CO2 laser” Appl. Opt. 36, 4411–4418 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  23. K. Hedsten, A. Magnusson, J. Melin, P. Enoksson, J. Bengtsson, F. Nikolajeff, D. Karlén, H. Rödjegård, and G. Andersson, “Replication of continuous-profiled micro-optical elements for silicon integration” Appl. Opt. 45, 83–89 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  24. H. Fujiwara, “Principles of spectroscopic ellipsometry” in Spectroscopic Ellipsometry: Principles and Applications, 81–140 (John Wiley & Sons, Chichester, 2003). [Google Scholar]
  25. A. Bosseboeuf, and S. Petitgrand, “Interference microscopy techniques for microsystem characterization” in Optical Inspection of Microsystems, W. Osten, ed., 217–244 (CRC Press, Boca Raton, 2007). [Google Scholar]
  26. M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches” J. Mod. Optic. 49, 1851–1870 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  27. J. S. Liu, A. J. Caley, and M. R. Taghizadeh, “Symmetrical iterative Fourier-transform algorithm using both amplitude and phase freedoms” Opt. Commun. 267, 347–355 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  28. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures” J. Opt. Soc. Am. A 7, 961–969 (1990). [CrossRef] [Google Scholar]
  29. A. W. Lohmann, and S. Sinzinger, “Graphics codes for computer holography” Appl. Opt. 34, 3172–3178 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  30. S. N. Toma, A. Alexandrescu, D. Muller, R. Muller, M. Kusko, N. Dumbravescu, V. Nascov, and D. Cojoc, “Binary phase reflective diffractive optical elements. Design and fabrication” (International Semiconductor Conference CAS 2004, Sinaia, Romania, IEEE CAS Proceedings, 2, 401–44, 4–6 October, 2004). [Google Scholar]
  31. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques” Opt. Express 17, 6283–6292 (2009). [NASA ADS] [CrossRef] [Google Scholar]
  32. J. A. Woollam, C. Bungay, L. Yan, D. Thomson, and J. Hilfinker, “Application of spectroscopic ellipsometry to the characterization of thin films” Proc. SPIE 4932, 393–404 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  33. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation” J. Appl. Phys. 83, 3323–3336 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  34. C. Gorecki, M. Józwik, and L. Salbut, “Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS” J. Microlith. Microfab. 4, 041402 (2005). [Google Scholar]
  35. C.-C. Wang, J.-Y. Lin, H.-J. Jian, and C.-H. Lee, “Transparent thinfilm characterization by using differential optical sectioning interference microscopy” Appl. Opt. 46, 7460–7463 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  36. M. Schulz, A. Wiegmann, A. Márquez, and C. Elster, “Optical flatness metrology: 40 years of progress” Opt. Pura Apl. 41, 325–331 (2008). [Google Scholar]
  37. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, and X. Gao, “Diffractive lens with features less than 60 nm” Opt. Lett. 25, 381–383 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  38. J. Vukusic, J. Bengtsson, M. Ghisoni, A. Larsson, C.-F. Carlström, and G. Landgren, “Fabrication and characterization of diffractive optical elements in InP for monolithic integration with surface-emitting components” Appl. Opt. 39, 398–401 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  39. S. Tamulevicius, A. Goubiene, G. Janusas, A. Palevivius, V. Ostasevivius, and M. Andrulevivius, “Optical characterization of diffractive optical elements replicated in polymers” J. Microlith. Microfab. 5, 013004 (2006). [Google Scholar]
  40. A. Martínez, M. M. Sánchez-López, and I. Moreno, “Phasor analysis of binary amplitude gratings with different fill factor” Eur. J. Phys. 28, 805–816 (2007). [CrossRef] [Google Scholar]
  41. J. W. Goodman, Introduction to Fourier Optics (2nd Edition, McGraw-Hill, New York, 1996). [Google Scholar]
  42. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition” Jpn. J. Appl. Phys. 34, 6423–6432 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  43. J. E. Ford, F. Xu, and Y. Fainman, “Wavelength-selective planar holograms” Opt. Lett. 21, 80–82 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  44. J. Pietarinen, S. Siitonen, N. Tossavainen, J. Laukkanen, and M. Kuittinen, “Fabrication of Ni-shims using UV-moulding as an intermediate step” Microelectron. Eng. 83, 492–498 (2006). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.