Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
|
|
---|---|---|
Article Number | 09052 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2009.09052 | |
Published online | 22 December 2009 |
- R. J. Schroeder, T. Yamate, and E. Udd, “High pressure and temperature sensing for the oil industry using fibre Bragg ratings written into side hole single mode fibre” Proc. SPIE 3746, 42–45 (1999). [NASA ADS] [Google Scholar]
- A. D. Kersey, “Optical fiber sensors for permanent downwell monitoring in the oil and gas industry” IEICE T. Electron. 83, 400–404 (2000). [Google Scholar]
- J. C. Cardozo da Silva, C. Martelli, H. J. Kalinowski, E. Penner, J. Canning, and N. Groothoff, “Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings” Opt. Laser Eng. 45, 88–92 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Shen, J. He, Y. Qiu, W. Zhao, S. Chen, T. Sun, and K. T. Grattan, “Thermal decay characteristics of strong fiber Bragg gratings showing high temperature sustainability” J. Opt. Soc. Am. B 24, 430–438 (2007). [CrossRef] [Google Scholar]
- O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures” Meas. Sci. Technol. 17, 975–979 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- M. Aslund, and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-out diffused optical fiber” Opt. Lett. 25, 692–694 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- J. Canning, K. Sommer, and M. Englund, “Fibre gratings for high temperature sensor applications” Meas. Sci. Technol. 12, 824–828 (2001). [CrossRef] [Google Scholar]
- W. X. Xie, P. Niay, P. Bernage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photo inscriptions of Bragg gratings within germanosilicate fibers” Opt. Commun. 104, 185–195 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- L. Dong, W. F. Liu, and L. Reekie, “Negative index gratings formed by 193 nm laser” Opt. Lett. 21, 2032–2034 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- N. Groothoff, and J. Canning, “Enhanced type IIA gratings for high-temperature operation” Opt. Lett. 29, 2360–2362 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. L. Archambault, L. Reekie, and P. St. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses” Electron. Lett. 29, 453–455 (1993). [NASA ADS] [CrossRef] [Google Scholar]
- P. Hill, G. R. Atkins, J. Canning, G. Cox, and M. G. Sceats, “Writing and visualisation of low threshold type II Bragg gratings in stressed optical fibres” Appl. Opt. 33, 7689–7694 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation” Meas. Sci. Technol. 17, 1009–1013 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Canning, “Fibre gratings and devices for sensors and lasers” Laser Photonics Rev. 2, 275–289 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers” J. Opt. Soc. Am. B 19, 1759–1765 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- S. Trpkovski, D. J. Kitcher, G. W. Baxter, S. F. Collins, and S. A. Wade, “High temperature-resistant chemical composition gratings in Er3+-doped optical fiber” Opt. Lett. 30, 607–609 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- B. Zhang, and M. Kahriziet, “High temperature resistance fiber Bragg grating temperature sensor fabrication” IEEE Sens. J. 7, 586–590 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm” Opt. Lett. 33, 1917–1919 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings” Sensors 8, 6448–6452 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- E. Linder, C. Chojetski, S. Brueckner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fibre Bragg gratings in photosensitive fibres” Opt. Express 17, 12523–12531 (2009). [NASA ADS] [CrossRef] [Google Scholar]
- K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers” Appl. Opt. 38, 1086–1095 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- J. Bao, X. Zhang, K. Chen, and W. Zhou, “Spectra of dual overwritten Bragg grating” Opt. Commun. 188, 31–39 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- M. Ibsen, M. K. Durkin, and R. I. Laming, “Chirped Moiré fiber gratings operating on two wavelength channels for use as dualchannel dispersion compensators” IEEE Photonic. Tech. Lett. 10, 84–86 (1998). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.