Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
Article Number 09040
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2009.09040
Published online 20 August 2009
  1. S. Hell, “Double-confocal scanning microscope” European Patent EP0491289 (1992). [Google Scholar]
  2. C. J. R. Sheppard, and Y. R. Gong, “Improvement in axial resolution by interference confocal microscopy” Optik 87, 129–132 (1991). [Google Scholar]
  3. S. Hell, and E. H. K. Stelzer, “Properties of a 4pi confocal fluorescence microscope” J. Opt. Soc. Am. A 9, 2159–2166 (1992). [CrossRef] [Google Scholar]
  4. D. Axelrod, N. L. Thomson, and T. P. Burghardt, “Total internal-reflection fluorescent microscopy” J. Microsc-Oxford 129, 19–28 (1983). [CrossRef] [Google Scholar]
  5. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “I5M: 3D wide-field light microscopy with better than 100nm axial resolution” J. Microsc-Oxford 195, 10–16 (1999). [CrossRef] [Google Scholar]
  6. S. W. Hell, and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission” Opt. Lett. 19, 780–782 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy” J. Microsc-Oxford 198, 82–87 (2000). [CrossRef] [Google Scholar]
  8. J. Wenger, F. Conchonaud, J. Dintinger, L. Wawrezinieck, T. W. Ebbesen, H. Rigneault, D. Marguet, and P.-F. Lenne, “Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization” Biophys. J. 92, 913–919 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  9. N. Sandeau, and H. Giovannini, “Increasing the lateral resolution of 4pi fluorescence microscopes” J. Opt. Soc. Am. A 23, 1089–1095 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. D. K. Kang, and D. G. Gweon, “Enhancement of lateral resolution in confocal self-interference microscopy” Opt. Lett. 28, 2470–2472 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  11. N. Sandeau, and H. Giovannini, “Arrangement of a 4Pi microscope for reducing the confocal detection volume with two-photon excitation” Opt. Commun. 264, 123–129 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  12. N. Sandeau, H. Giovannini, and H. Rigneault, “Interferometric confocal microscope” World Patent WO/2007/141409 (2007). [Google Scholar]
  13. K. Wicker, and R. Heintzmann, “Interferometric resolution improvement for confocal microscopes” Opt. Express 15, 12206–12216 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  14. J. Liu, and R. M. A. Azzam, “Polarization properties of corner-cube retroreflectors: theory and experiment” Appl. Optics 36, 1553–1559 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  15. R. Creton, and L. F. Jaffe, “Chemiluminescence microscopy as a tool in biomedical research” Biotechniques 31, 1098–1105 (2001). [CrossRef] [Google Scholar]
  16. R. E. Ziemer, and W. H. Tranter, Principles of Communications (Wiley Publishing, 2008). [Google Scholar]
  17. P. Debye, “Das verhalten von lichtwellen in der nahe eines brennpunktes oder einer brennlinie” Ann. Phys. 335, 755–776 (1909). [NASA ADS] [CrossRef] [Google Scholar]
  18. C. J. R. Sheppard, and M. Gu, “Image formation in two-photon fluorescence microscopy” Optik 86, 104–106 (1990). [Google Scholar]
  19. L. Wawrezinieck, H. Rigneault, D. Marguet, and P.-F. Lenne, “Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization” Biophys. J. 89, 4029–4042 (2005). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.