Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
|
|
---|---|---|
Article Number | 09037 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.2971/jeos.2009.09037 | |
Published online | 27 July 2009 |
- A. Douhal, “Ultrafast Guest Dynamics in Cyclodextrin Nanocavities” Chem. Rev. 104, 1955–1976 (2004). [CrossRef] [Google Scholar]
- C. Lin, Y. Liu, C. Lai, S. Peng, and S. Chiu, “An Extremely Stable Host-Guest Complex that Functions as a Fluorescence Probe for Calcium Ions” Chemistry 2, 4594–4599 (2006). [CrossRef] [Google Scholar]
- C. De Rosa, G. Guerra, V. Petraccone, and B. Pirozzi, “Crystal Structure of the Emptied Clathrate Form (de Form) of Syndiotactic Polystyrene” Macromolecules 30, 4147–4152 (1997). [CrossRef] [Google Scholar]
- G. Milano, V. Venditto, G. Guerra, L. Cavallo, P. Ciambelli, and D. Sannino, “Shape and Volume of Cavities in Thermoplastic Molecular Sieves Based on Syndiotactic Polystyrene” Chem. Mater. 13, 1506–1511 (2001). [CrossRef] [Google Scholar]
- P. Rizzo, C. Daniel, A. De Girolamo Del Mauro, and G. Guerra, “New Host Polymeric Framework and Related Polar Guest Cocrystals” Chem. Mater. 19, 3864–3866 (2007). [CrossRef] [Google Scholar]
- V. Petraccone, O. Ruiz de Ballesteros, O. Tarallo, P. Rizzo, and G. Guerra, “Nanoporous Polymer Crystals with Cavities and Channels” Chem. Mater. 20, 3663–3668 (2008). [CrossRef] [Google Scholar]
- C. Manfredi, M. A. Del Nobile, G. Mensitieri, G. Guerra, and M. Rapacciuolo, “Vapor Sorpion in Emptied Clathrate Samples of Syndiotactic Polystyrene” J. Polym. Sci 35, 135–140 (1997). [Google Scholar]
- C. Daniel, D. Alfano, V. Venditto, S. Cardea, E. Reverchon, D. Larobina, G. Mensitieri, and G. Guerra, “Aerogels with a Microporous Crystalline Host Phase” Adv. Mater. 17, 1515–1518 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- C. Daniel, D. Sannino, and G. Guerra, “Syndiotactic Polystyrene Aerogels: Adsorption in Amorphous Pores and Absorption in Crystalline Nanocavities” Chem. Mater. 20, 577–582 (2008). [CrossRef] [Google Scholar]
- G. Guerra, G. Milano, V. Venditto, P. Musto, C. De Rosa, and L. Cavallo, “Thermoplastic Molecular Sieves” Chem. Mater. 12, 363–368 (2000). [CrossRef] [Google Scholar]
- Y. Chatani, T. Inagaki, Y. Shimane, T. Ijitsu, T. Yukimori, and H. Shikuma, “Structural Study on Syndiotactic Polystyrene: 2. Crystal Structure of Molecular Compound with Toluene” Polymer 34, 1620–1624 (1993). [CrossRef] [Google Scholar]
- C. De Rosa, P. Rizzo, O. Ruiz de Ballesteros, V. Petraccone, and G. Guerra, “Crystal Structure of the Clathrate d Form of Syndiotactic Polystyrene Containing 1,2-Dichloroethane” Polymer 40, 2103–2110 (1999). [CrossRef] [Google Scholar]
- V. Petraccone, O. Tarallo, V. Venditto, and G. Guerra, “An Intercalate Molecular Complex of Syndiotactic Polystyrene” Macro-molecules 38, 6965–6971 (2005). [CrossRef] [Google Scholar]
- O. Tarallo, V. Petraccone, V. Venditto, and G. Guerra, “Crystalline Structures of Intercalte Molecular Complexes of Syndiotactic Polystyrene with Two Fluorescent Guests: 1,3,5-Trimethyl-benzene and 1,4-dimethyl-naphthalene” Polymer 47, 2402–2410 (2006). [CrossRef] [Google Scholar]
- A. R. Albunia, G. Milano, V. Venditto, and G. Guerra, “A Clear-Cut Experimental Method to Discriminate between In-Plane and Out-of-Plane Molecular Transition Moments” J. Am. Chem. Soc. 127, 13114–13115 (2005). [CrossRef] [Google Scholar]
- C. Daniel, N. Galdi, T. Montefusco, and G. Guerra, “Syndiotactic Polystyrene Clathrates with Polar Guest Molecules” Chem. Mater. 19, 3302–3308 (2007). [CrossRef] [Google Scholar]
- E. Trezza, and A. Grassi, “Dynamics of aromatic molecules clathrated in crystalline Syndiotactic Polystyrene: A Solid State 2H NMR Investigation of the Host/Guest Complexes” Macromol. Rapid Commun. 23, 260–263 (2002). [CrossRef] [Google Scholar]
- A. R. Albunia, R. Graf, G. Guerra, and H. W. Spiess, “2H NMR Study of Aromatic Guest Dynamics in Clathrate Phases of Syndiotactic Polystyrene” Macromol. Chem. Phys. 206, 715-7-24 (2005). [CrossRef] [Google Scholar]
- P. Rizzo, M. Lamberti, A. R. Albunia, O. Ruiz de Ballesteros, and G. Guerra, “Crystalline Orientation in Syndiotactic Polystyrene Cast Films” Macromolecules 35, 5854–5860 (2002) [CrossRef] [Google Scholar]
- P. Rizzo, A. Costabile, and G. Guerra, “Perpendicular Orientation of Host Polymer Chains in Clathrate Thick Films” Macromolecules 37, 3071–3076 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- P. Rizzo, A. Spatola, A. De Girolamo Del Mauro, and G. Guerra, “Polymeric Films with Three Different Uniplanar Crystalline Phase Orientations” Macromolecules 38, 10089–10094 (2005). [CrossRef] [Google Scholar]
- L. -T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives” J. Phys. Chem. 95, 10631–10643 (1991). [CrossRef] [Google Scholar]
- L. -T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, “Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 2. A Study of Conjugation Dependences” J. Phys. Chem. 95, 10643–10652 (1991). [CrossRef] [Google Scholar]
- H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, and H. M. Gordon, “Greatly Enhanced Second-order Nonlinear Optical Susceptibilities in Donor-acceptor Organic Molecules” J. Am. Chem. Soc. 109, 6561–6563 (1987). [CrossRef] [Google Scholar]
- V. Venditto, G. Milano, A. De Girolamo Del Mauro, G. Guerra, J. Mochizuki, and H. Itagaki, “Orientation and Microenvironment of Naphthalene Guest in the Host Nanoporous Phase of Syndiotactic Polystyrene” Macromolecules 38, 3696–3702 (2005) [CrossRef] [Google Scholar]
- A. De Girolamo Del Mauro, M. Carotenuto, V. Venditto, V. Petraccone, M. Scoponi, and G. Guerra, “Fluorescence of Syndiotactic Polystyrene/Trimethylbenzene Clathrate and Intercalate Co-Crystals” Chem. Mater. 19, 6041–6046 (2007). [CrossRef] [Google Scholar]
- S. Takahashi, K. Samata, H. Muta, S. Machida, and K. Horie, “Refractive-index Patterning Using Near-field Scanning Optical Microscopy” Appl. Phys. Lett. 78, 13–15 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- T. Nagai, M. Shimada, Y. Ono, and T. Nishikubo, “Synthesis of New Photoresponsive Polymers Containing Trifluoromethyl-Substituted Norbornadiene Moieties” Macromolecules 36, 1786–1792 (2003). [CrossRef] [Google Scholar]
- D. R. Robello, S. Y. Farid, J. P. Dinnocenzo, and J. G. Gillmore, “Optical Recording Material”, US patent 6969578 (2005). [Google Scholar]
- P. Stegmaier, A. De Girolamo Del Mauro, V. Venditto, and G. Guerra, “Optical Recording Materials Based on Photoisomerization of Guests Molecules of a Polymeric Crystalline Host Phase” Adv. Mater. 17, 1166–1168 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- C. D’Aniello, P. Musto, V. Venditto, and G. Guerra, “Photoisomerization Patterns Based on Molecular Complex Phases of Syndiotactic Polystyrene” J. Mater. Chem. 17, 531–537 (2007). [CrossRef] [Google Scholar]
- D. G. Lishan, K. V. Reddy, G. S. Hamond, and J. E. Leonard, “Overtone Vibrational Photochemistry of Quadricyclane” J. Phys. Chem. 92, 656–660 (1988). [CrossRef] [Google Scholar]
- N. T. Kawai, F. R. Gilson, and I. S. Butler, “Variable-Temperature and -Pressure Studies of the Vibrational Spectra and Phase Transition in Quadricyclane” J. Phys. Chem. 96, 8556–8561 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- L. J. Prins, D. N. Reinhoudt, and P. Timmerman, “Noncovalent Synthesis Using Hydrogen Bonding” Angew. Chem. Int. Ed. 40, 2382–2426 (2001). [CrossRef] [Google Scholar]
- X. X. Zhang, J. S. Bradshaw, and R. M. Izatt, “Enantiomeric Recognition of Amine Compounds by Chiral Macrocyclic Receptors” Chem. Rev. 97, 3313–3361 (2007). [Google Scholar]
- Y. Okamoto, E. Yashima, and C. Yamamoto, “Optically Active Polymers with Chiral Recognition Ability” Top. Stereochem. 24, 157–208 (2003). [CrossRef] [Google Scholar]
- M. M. Green, C. Khatri, and N. C. Peterson, “A Macromolecular Conformational Change Driven by a Minute Chiral Solvation Energy” J. Am. Chem. Soc. 115, 4941–4942 (1993). [CrossRef] [Google Scholar]
- A. E. Rowan, R. J. M. Nolte, “Helical Molecular Programming” Angew. Chem. Int. Ed 110, 6368 (1998) [Google Scholar]
- E. Yashima, K. Maeda, and Y. Okamoto, “Memory of Macromolecular Helicity Assisted by Interaction with Achiral Small Molecules” Nature 399, 449–451 (1999) [NASA ADS] [CrossRef] [Google Scholar]
- M. M. Green, J. W. Park, T. Sato, A. Teramoto, S. Lifson, R. L. B. Selinger, and J. V. Selinger, “The Macromolecular Route to Chiral Amplification” Angew. Chem. Int. Ed. 38, 3138–3154 (1999). [CrossRef] [Google Scholar]
- H. Nakashima, J. R. Koe, K. Torimitsu, and M. Fujiki, “Transfer and Amplification of Chiral Molecular Information to Polysilylene Aggregates” J. Am. Chem. Soc. 123, 4847–4848 (2001). [CrossRef] [Google Scholar]
- E. Yashima, K. Maeda, and T. Nishimura, “Detection and Amplification of Chirality by Helical Polymers” Chem. Eur. J. 10, 42–51 (2004). [CrossRef] [Google Scholar]
- A. Buono, P. Rizzo, I. Immediata, and G. Guerra, “Detection and Memory of Nonracemic Molecules by a Racemic Host Polymer Films” J. Am. Chem. Soc. 129, 10992–10993 (2007). [CrossRef] [Google Scholar]
- L. Guadagno, M. Raimondo, C. Silvestre, I. Immediata, P. Rizzo, and G. Guerra, “Processing, Thermal Stability and Morphology of Chiral Sensing Syndiotactic Polystyrene Films” J. Mater. Chem. 18, 567–572 (2008). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.