Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
|
|
---|---|---|
Article Number | 09033 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2009.09033 | |
Published online | 23 June 2009 |
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics” Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed] [Google Scholar]
- S. John, “Strong localization of photons in certain disordered dielectric superlattices” Phys. Rev. Lett. 58, 2486 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: how does self-assembly work?” Adv. Mater. 16, 1393 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Xia, B. Gates, and Z. Y. Li, “Self-assembly approaches to three-dimensional photonic crystals” Adv. Mater. 13, 409 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania” Science 281, 802 (1998). [CrossRef] [Google Scholar]
- A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures three-dimensional periodicity at optical wavelengths” Science 282, 897 (1998). [CrossRef] [Google Scholar]
- D. J. Norris and Y. A. Vlasov, “Chemical approaches to three-dimensional semiconductor photonic crystals” Adv. Mater. 13, 371 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, and R. Zentel, “Light emission from thin opaline photonic crystals of low and high dielectric contrast” Synthetic Met. 124, 131 (2001). [CrossRef] [Google Scholar]
- A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. V. Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres” Nature 405, 437 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness” Chem. Mater. 11, 2132 (1999). [CrossRef] [Google Scholar]
- P. Jiang, J. F. Bertone, and V. L. Colvin, “A lost-wax approach to monodisperse colloids and their crystals” Science 291, 453 (2001). [CrossRef] [Google Scholar]
- F. Jonsson, C. M. S. Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artificially inscribed defects in opal photonic crystals” Microelectron. Eng. 78-79, 429 (2005). [CrossRef] [Google Scholar]
- T. A. Taton and D. J. Norris, “Device physics: Defective promise in photonics” Nature 416, 685 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals” Nature 414, 289 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, “Interplay of order and disorder in the optical properties of opal photonic crystals” Phys. Rev. B 66, 165215 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, “Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals” Phys. Rev. E 61, 5784 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- Y. A. Vlasov, M. Deutsch, and D. J. Norris, “Single-domain spectroscopy of self-assembled photonic crystals” Appl. Phys. Lett. 76, 1627 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- J. F. Galisteo Lòpez and W. L. Vos, “Angle-resolved reflectivity of single-domain photonic crystals: Effects of disorder” Phys. Rev. E 66, 036616 (2002). [CrossRef] [Google Scholar]
- C. A. Fustin, G. Glasser, H. W. Spiess, and U. Jonas, “Site-selective growth of colloidal crystals with photonic properties on chemically patterned surface” Adv. Mater. 15, 1025 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- X. Y. Ling, I. Y. Phang, W. Maijenburg, H. Schönherr, D. N. Reinhoudt, G. J. Vancso, and J. Huskens, “Free-standing 3D supramolecular hybrid particle structures” Angew. Chem. Int. Edit. 48, 983 (2009). [CrossRef] [Google Scholar]
- J. D. Joannopulos, R. D. Meade, and J. N. Win, Photonic Crystals: Molding the Flow of the Light (Princeton University Press, Princeton, 1995). [Google Scholar]
- C. Lopez, “Materials aspects of photonic crystals” Adv. Mater. 15, 1679 (2003). [CrossRef] [Google Scholar]
- D. Comoretto, V. Morandi, F. Marabelli, V. Amendola, and M. Meneghetti, “Optical effects in artificial opals infiltrated with gold nanoparticles” SPIE Proc. Ser. 6182, 61820D (2006). [NASA ADS] [CrossRef] [Google Scholar]
- V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, “Colloidal photonic crystals doped with gold nanoparticles; spectroscopy & optical switching properties” Adv. Funct. Mater. 17, 2770 (2007). [Google Scholar]
- V. Morandi, F. Marabelli, V. Amendola, M. Meneghetti, and D. Comoretto, “Light localization effect on the optical properties of opals doped with gold nanoparticles” J. Phys. Chem. C 112, 6293 (2008). [NASA ADS] [CrossRef] [Google Scholar]
- M. Cucini, D. Comoretto, M. Galli, F. Marabelli, A. Abbotto, L. Bellotto, and C. Marinzi, “Emission properties of artificial opals infiltrated with a heteroaromatic quadrupolar dye” SPIE Proc. Ser. 6999, 69992D (2008). [NASA ADS] [CrossRef] [Google Scholar]
- D. Comoretto, F. Marabelli, C. Soci, M. Galli, E. Pavarini, M. Patrini, and L. C. Andreani, “Morphology and optical properties of bare and polydiacetylenes-infiltrated opals” Synthetic Met. 139, 633 (2003). [CrossRef] [Google Scholar]
- E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous Emission of Organic Molecules Embedded in a Photonic Crystal” Phys. Rev. Lett. 81, 77 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- M. Deutsch, Y. A. Vlasov, and D. J. Norris, “Conjugated-polymer photonic crystals” Adv. Mater. 12, 1176 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Evidence for braggoriton excitations in opal photonic crystals infiltrated with highly polarizable dyes” Appl. Phys. Lett. 80, 3491 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- N. Eradat, M. Wohlgenannt, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman, “Studies of optical transitions related to piconjugated polymers and laser dyes infiltrated in opal photonic crystals” Synthetic Met. 116, 509 (2001). [CrossRef] [Google Scholar]
- J.-C. Hong, J. H. Park, C. Chun, and D. Y. Kim, “Photoinduced tuning of optical stop bands in azopolymer based inverse opal photonic crystals” Adv. Funct. Mater. 17, 2462 (2007). [CrossRef] [Google Scholar]
- M. N. Shkunov, Z. V. Vardeny, M. C. DeLong, R. C. Polson, A. A. Zakhidov, and R. H. Baughman, “Tunable, gap-state lasing in switchable directions for opal photonic crystals” Adv. Funct. Mater. 12, 21 (2002). [Google Scholar]
- R. C. Polson, A. Chipouline, and Z. V. Vardeny, “Random Lasing in p-Conjugated Films and Infiltrated Opals” Adv. Mater. 13, 760 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- R. C. Polson and Z. V. Vardeny, “Organic random laser in the weak-scattering regime” Phys. Rev. B 71, 045205 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- P. Markowicz, C. Friend, Y. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals” Opt. Lett. 27, 351 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light” Nature 386, 143 (1997). [CrossRef] [Google Scholar]
- P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art” Adv. Mater. 18, 2665 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- Y. H. Ye, T. S. Mayer, I. C. Khoo, I. B. Divliansky, N. Abrams, and T. E. Mallouk, “Self-assembly of three-dimensional photonic-crystals with air-core line defects” J. Mater. Chem 12, 3637 (2002). [CrossRef] [Google Scholar]
- Q. Yan, Z. Zhou, X. S. Zhao, and S.J. Chua, “Line defects embedded in three-dimensional photonic crystals” Adv. Mater. 17, 1917 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- J. F. Galisteo-Lopez, M. Galli, L. C. Andreani, A. Mihi, R. Pozas, M. Ocana, and H. Miguez, “Phase delay and group velocity determination at a planar defect state in three dimensional photonic crystals” Appl. Phys. Lett. 90, 101113 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- D. L. C. Chan, E. Lidorikis, and J. D. Joannopoulos, “Point defect geometries in inverted opal photonic crystals” Phys. Rev. E 71, (2005). [Google Scholar]
- E. Palacios-Lidon, J. F. Galisteo-Lopez, B. H. Juarez, and C. Lopez, “Engineered planar defects embedded in opals” Adv. Mater. 16, 341 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Q. Yan, Z. Zhou, and X. S. Zhao, “Introduction of three-dimensional extrinsic defects into colloidal photonic crystals” Chem. Mater. 17, 3069 (2005). [CrossRef] [Google Scholar]
- S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal lasers with a light-emitting planar defect” Adv. Mater. 19, 2067 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- N. Tetreault, A. Mihi, H. Miguez, I. Rodriguez, G. A. Ozin, F. Meseguer, and V. Kitaev, “Dielectric planar defects in colloidal photonic crystal films” Adv. Mater. 16, 346 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J. R. Lawrence, Y. Ying, P. Jiang, and S. H. Foulger, “Dynamic tuning of organic lasers with colloidal crystals” Adv. Mater. 18, 300 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- L. Wang, Q. Yan, and X. S. Zhao, “From planar defect in opal to planar perfect in inverse opal” Langmuir 22, 3481 (2006). [CrossRef] [Google Scholar]
- S. Noda, A. Chutian, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure” Nature 407, 608 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser” Science 284, 1819 (1999). [CrossRef] [Google Scholar]
- R. Pozas, A. Mihi, M. Ocana, and H. Miguez, “Building nanocrystalline planar defects within self-assembled photonic crystals by spin-coating” Adv. Mater. 18, 1183 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. Arsenault, F. Fleischhaker, G. V. Freymann, V. Kitaev, H. Miguez, A. Mihi, N. Tetreault, E. Vekris, I. Manners, S. Aitchison, D. Perovic, and G. A. Ozin, “Perfecting imperfection-designer defects in colloidal photonic crystals” Adv. Mater. 18, 2779 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- Q. Yan, L. K. Teh, Q. Shao, C. C. Wong, and Y. M. Chiang, “Layer transfer approach to opaline hetero photonic crystals” Langmuir 24, 1796 (2008). [CrossRef] [Google Scholar]
- N. Tetreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G. A. Ozin, “Building tunable planar defects into phoyonics crystals using polyelectrolyte multilayers” Adv. Mater. 17, 1912 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- F. Fleischhaker, A. C. Arsenault, J. Schmidtke, R. Zentel, and G. A. Ozin, “Spin-coating of designed functional planar defects in opal film: generalized synthesis” Chem. Mater. 18, 5640 (2006). [CrossRef] [Google Scholar]
- N. Tetreault, H. Miguez, S. M. Yang, V. Kitaev, and G. A. Ozin, “Refractive index patterns in silicon inverted colloidal photonic crystals” Adv. Mater. 15, 1167 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Jun, C. A. Leatherdale, and D. J. Norris, “Tailoring air defects in self-assembled photonic bandgap crystals” Adv. Mater. 17, 1908 (2005). [CrossRef] [Google Scholar]
- F. Fleischhaker, A. C. Arsenault, V. Kitaev, F. C. Peiris, G. v. Freymann, I. Manners, R. Zentel, and G. A. Ozin, “Photochemically and thermally tunable planar defects in colloidal photonic crystals” J. Am. Chem. Soc. 127, 9318 (2005). [CrossRef] [Google Scholar]
- Q. Yan, A. Chen, S. J. Chua, and X. S. Zhao, “Incorporation of point defects into self-assembled three-dimensional colloidal crystals” Adv. Mater. 17, 2849 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- P. Massé, S. Reculusa, K. Clays, and S. Ravaine, “Tailoring planar defect in three-dimensional colloidal crystals” Chem. Phys. Lett. 422, 251 (2006). [CrossRef] [Google Scholar]
- Q. Yan, L. Wang, and X. S. Zhao, “Artificial defect engineering in three-dimensional colloidal photonic crystals” Adv. Funct. Mater. 17, 3695 (2007). [Google Scholar]
- W. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals” Adv. Mater. 14, 271 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- J. Feng, S. Yang, D. Xian-Zi, C. Wei-Qiang, and D. Xuan-Ming, “Amplified spontaneous emission from dye-doped polymer film sandwiched by two opal photonic crystals” Appl. Phys. Lett. 91, 031109 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- F. Jin, C.-F. Li, X.-Z. Dong, W.-Q. Chen, and X.-M. Duan, “Laser emission fron dye-doped polymer film in opal photonic crystal cavity” Appl. Phys. Lett. 89, 241101 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- A. Abbotto, L. Beverina, S. Bradamante, A. Facchetti, C. Klein, G. A. Pagani, M. Redi-Abshiro, and R. Wortmann, “A distintive example of the cooperative interplay of structure and environment in tuning of intramolecular charge transfer in second-order non-linear optical chromophores” Chem. Eur. J. 9, 1991 (2003). [CrossRef] [Google Scholar]
- G. Archetti, A. Abbotto, and R. Wortmann, “Effect of polarity and structural design on molecular photorefractive properties of heteroaromatic-based push-pull dyes” Chem. Eur. J. 12, 7151 (2006). [CrossRef] [Google Scholar]
- F. Di Stasio, M. Cucini, L. Berti, D. Comoretto, M. Galli, F. Marabelli, A. Abbotto, L. Bellotto, C. Marinzi, S. Gardin, T. Dainese, R. Signorini, and R. Bozio, in preparation [Google Scholar]
- M. Pope and C. E. Swenberg, Electronic processes in organic crystals and polymers (Oxford University Press, New York, 1999). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.