Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 4, 2009
Article Number 09015
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2009.09015
Published online 11 April 2009
  1. C. Ciminelli, F. Dell’Olio, C. E. Campanella, V. M. N. Passaro, and M. N. Armenise, “Integrated Optical Ring Resonators: Modelling and Technologies” in Progress in Optical Fibers, P. S. Emersone, ed. (NOVA Science Publishers, New York, 2009). [Google Scholar]
  2. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide” AT&T Tech. J. 48, 3187–3215 (1969) [Google Scholar]
  3. J. P. R. Lacey and F. P. Payne, “Radiation loss from planar waveguides with random wall imperfections” Pr. Inst. Electr. Elect. 137, 282–288 (1990). [Google Scholar]
  4. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides” Opt. Quant. Electron. 26, 977–986 (1994). [CrossRef] [Google Scholar]
  5. K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model” Appl. Phys. Lett. 77, 1617–1619 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  6. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides” IEEE Photonic. Tech. L. 16, 1661–1663 (2004). [CrossRef] [Google Scholar]
  7. C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides” IEEE J. Sel. Top. Quant. 12, 1306–1321 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  8. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides” J. Lightwave Technol. 23, 2719–2732 (2005). [CrossRef] [Google Scholar]
  9. B. E. Little and S. T. Chu, “Estimating surface-roughness loss and output coupling in microdisk resonators” Opt. Lett. 21, 1390–1392 (1996). [NASA ADS] [CrossRef] [Google Scholar]
  10. M. N. Armenise, V. M. N. Passaro, F. De Leonardis, and M. Armenise, “Modeling and Design of a Novel Miniaturized Integrated Optical Sensor for Gyroscope Applications” J. Lightwave Technol. 19, 1476–1494 (2001). [CrossRef] [Google Scholar]
  11. C. Ciminelli, F. Peluso, E. Armandillo, and M. N. Armenise, Modeling of a new integrated optical angular velocity sensor (Optronics Symposium (OPTRO), Paris, 8–12 May 2005). [Google Scholar]
  12. C. Ciminelli, F. Peluso, and M. N. Armenise, “A new integrated optical angular velocity sensor” Proc. SPIE 5728, 93–100 (2007). [Google Scholar]
  13. C. Ciminelli, F. Peluso, N. Catalano, B. Bandini, E. Armandillo, and M. N. Armenise, Integrated optical gyroscope using a passive ring resonator (5th Round Table on Micro/Nano Technologies for Space, Noordwijk, 3–5 October 2005). [Google Scholar]
  14. C. Ciminelli, Innovative photonic technologies for gyroscope systems (EOS Topical Meeting - Photonic Devices in Space, Paris, 18–19 October 2006). [Google Scholar]
  15. C. Ciminelli, C. E. Campanella, and M. N. Armenise, Design of passive ring resonators to be used for sensing applications 278–280 (First Mediterranean Photonics Conference, Ischia, 2008). [Google Scholar]
  16. C. Ciminelli, C. E. Campanella, and M. N. Armenise, “Optimized Design of Integrated Optical Angular Velocity Sensors based on a Passive Ring Resonator” to be published in J. Lightwave Technol. (2009). [Google Scholar]
  17. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically Integrated Resonator Microoptic Gyro on Silica Planar Lightwave Circuit” J. Lightwave Technol. 18, 66–72 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  18. H. Ma, X. Zhang, Z. Jin, and C. Ding, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique” Opt. Eng. 45, 080506 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  19. S. J. Choi, K. Djordjev, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Laterally Coupled Buried Heterostructure High-Q Ring Resonators” IEEE Photonic. Tech. L. 16, 2266–2268 (2004). [CrossRef] [Google Scholar]
  20. T. Barwicz, and H. I. Smith, “ Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices” J. Vac. Sci. Technol. B 21, 2892–2896 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  21. Fimmwave 4.6, Photon Design (2007). [Google Scholar]
  22. Mathematica 7, Wolfram Research (2007). [Google Scholar]
  23. Comsol Multiphysics 3.2, COMSOL (2005). [Google Scholar]
  24. F. F. Soares, Photonic integrated true-time-delay beamformers in InP technology paragraph 2.3 (Ph.D thesis, Technische Universiteit Eindhoven, 2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.