Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
|
|
---|---|---|
Article Number | 08039 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2008.08039 | |
Published online | 09 December 2008 |
- J.W.S. Rayleigh, “On the passage of waves through apertures in plane screens, and allied problems” Philos. Mag. 43, 259–272 (1897). [CrossRef] [Google Scholar]
- G. Kirchhoff, “Zur Theorie der Lichtstrahlen” Ann. Phys. 254(4), 663–695 (1882). [Google Scholar]
- L.E. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders, Fundamentals of acoustics 176, (Wiley, Hoboken NJ, USA, 1982). [Google Scholar]
- M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, United Kingdom, 1999). [CrossRef] [Google Scholar]
- P. Debye, “Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie” Ann. Phys. 335(14), 755–776 (1909). [NASA ADS] [CrossRef] [Google Scholar]
- E. Wolf, and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields” Opt. Commun. 39, 205–210 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Li, and E. Wolf, “Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers” J. Opt. Soc. Am. A1, 801–808 (1984). [NASA ADS] [CrossRef] [Google Scholar]
- J.J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol, 1986). [Google Scholar]
- V.S. Ignatowsky, “Diffraction by a lens of arbitrary aperture” Tr. Opt. Inst. Petrograd 1(4), 1–36 (1919). [Google Scholar]
- B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system” Proc. R. Soc. Lon Ser. A 253, 358–379 (1959). [NASA ADS] [CrossRef] [Google Scholar]
- C.J.R. Sheppard, and H.J. Matthews, “Imaging in high-aperture optical systems” J. Opt. Soc. Am. A4, 1354–1360 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen, and A.S. van de Nes, “Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system” J. Opt. Soc. Am. A20, 2281–2292 (2003). [Google Scholar]
- A.J.E.M. Janssen, S. van Haver, J.J.M. Braat, and P. Dirksen, “Strehl ratio and optimum focus of high-numerical-aperture beams” J. Europ. Opt. Soc. Rap. Public. 2, 07008 (2007). [CrossRef] [Google Scholar]
- S. van Haver, J.J.M. Braat, P. Dirksen, and A.J.E.M. Janssen, “High-NA aberration retrieval with the extended Nijboer-Zernike vector diffraction theory” J. Europ. Opt. Soc. Rap. Public. 1, 06004 (2006). [CrossRef] [Google Scholar]
- S. van Haver, J.J.M. Braat, P. Dirksen, and A.J.E.M. Janssen, “High-NA aberration retrieval with the extended Nijboer-Zernike vector diffraction theory - Erratum” J. Europ. Opt. Soc. Rap. Public. 2, 07011e (2007). [CrossRef] [Google Scholar]
- J.J.M. Braat, S. van Haver, A.J.E.M. Janssen, and P. Dirksen, “Energy and momentum flux in a high-numerical-aperture beam using the extended Nijboer-Zernike diffraction formalism” J. Europ. Opt. Soc. Rap. Public. 2, 07032 (2007). [CrossRef] [Google Scholar]
- J.J.M. Braat, S. van Haver, A.J.E.M. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions” in Progress in Optics, E. Wolf, ed., 51, 349–468 (Elsevier, Amsterdam, The Netherlands, 2008). [NASA ADS] [CrossRef] [Google Scholar]
- V. Paeder, T. Scharf, P. Ruffieux, H.P. Herzig, R. Voelkel, and K. Weible, “Microlenses with annular amplitude and phase masks” J. Europ. Opt. Soc. Rap. Public. 2, 07005 (2007). [CrossRef] [Google Scholar]
- H.T. O’Neil, “Theory of focusing radiators” J. Acoust. Soc. Am. 21, 516–526 (1949). [CrossRef] [Google Scholar]
- G.W. Farnell, “Calculated intensity and phase distribution in the image space of a microwave lens” Can. J. Phys. 35, 777–783 (1957). [NASA ADS] [CrossRef] [Google Scholar]
- H. Osterberg, and L.W. Smith, “Closed solutions of Rayleigh’s diffraction integral for axial points” J. Opt. Soc. Am 51, 1050–1054 (1961). [CrossRef] [Google Scholar]
- A. Arimoto, “Intensity distribution of aberration-free diffraction patterns due to circular apertures in large F-number optical systems” Opt. Acta 23, 245–250 (1976). [NASA ADS] [CrossRef] [Google Scholar]
- J.H. Erkkila, and M.E. Rogers, “Diffracted fields in the focal region of a convergent wave” J. Opt. Soc. Am. 71, 904–905 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- Y. Li, and E. Wolf, “Focal shifts in diffracted converging spherical waves” Opt. Commun. 39, 211–215 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- J.J. Stamnes, and S. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations” Opt. Commun. 40, 81–85 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- B.G. Lucas, and T.G. Muir, “The field of a focusing source” J. Acoust. Soc. Am. 72, 1289–1296 (1982). [NASA ADS] [CrossRef] [Google Scholar]
- C.J.R. Sheppard, and M. Hrynevych, “Diffraction by a circular aperture: a generalization of Fresnel diffraction theory” J. Opt. Soc. Am. A9, 274–281 (1992). [NASA ADS] [CrossRef] [Google Scholar]
- G.W. Forbes, “Validity of the Fresnel approximation in the diffraction of collimated beams” J. Opt. Soc. Am. A13, 1816–1826 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- A.A. Asatryan, and G.W. Forbes, “Beyond the Fresnel approximation for focused waves” J. Opt. Soc. Am. A16, 1958–1969 (1999). [Google Scholar]
- C.J.R. Sheppard, and P. Török, “Dependence of focal shift on Fresnel number and angular aperture” Opt. Lett. 23, 1803–1804 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- C.J.R. Sheppard, and P. Török, “Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number” J. Opt. Soc. Am. A11, 2156–2162 (2003). [CrossRef] [Google Scholar]
- Y. Li, “Predictions of Rayleigh’s diffraction theory for the effect of focal shift in high-aperture systems” J. Opt. Soc. Am. A25, 1835–1842 (2008). [CrossRef] [Google Scholar]
- J. Zemanek, “Beam behavior within the nearfield of a vibrating piston” J. Acoust. Soc. Am. 49, 181–191 (1971). [NASA ADS] [CrossRef] [Google Scholar]
- J.C. Lockwood, and J.G. Willette, “High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston” J. Acoust. Soc. Am. 53, 735–741 (1973). [NASA ADS] [CrossRef] [Google Scholar]
- J.E. Harvey, “Fourier treatment of near-field scalar diffraction theory” Am. J. Phys. 47, 974–980 (1979). [NASA ADS] [CrossRef] [Google Scholar]
- W.H. Southwell, “Asymptotic solution of the Huygens-Fresnel integral in circular coordinates” Opt. Lett. 3, 100–102 (1978). [NASA ADS] [CrossRef] [Google Scholar]
- W.H. Southwell, “Validity of the Fresnel approximation in the near field” J. Opt. Soc. Am. 71, 7–14 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- A.M. Steane, and H.N. Rutt, “Diffraction calculations in the near field and the validity of the Fresnel approximation” J. Opt. Soc. Am. A6, 1809–1814 (1989). [NASA ADS] [CrossRef] [Google Scholar]
- A.S. Marathay, and J.F. McCalmont, “On the usual approximation used in the Rayleigh-Sommerfeld diffraction theory” J. Opt. Soc. Am. A21, 510–516 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- J.J. Stamnes, “Focusing of a perfect wave and the Airy pattern formula” Opt. Commun. 37, 311–314 (1981). [NASA ADS] [CrossRef] [Google Scholar]
- M. Abramowitz, and I.A. Stegun, Handbook of Mathematical Functions, (Dover Publications, New York, 1972) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.