Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
|
|
---|---|---|
Article Number | 08031 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.2971/jeos.2008.08031 | |
Published online | 18 September 2008 |
- A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic crystal fibres (Kluwer, Academic Publishers, 2003). [CrossRef] [Google Scholar]
- J. Canning, “Fresnel Optics Inside Optical Fibres” in Photonics Research Developments, (Nova Science Publishers, 2008). [Google Scholar]
- W. Reeves, J. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers” Opt. Express. 10, 609–613 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber” Opt. Lett. 22, 961–963, (1997). [NASA ADS] [CrossRef] [Google Scholar]
- J. C. Knight, and D. V. Skyrabin, “Nonlinear waveguide optics and photonic crystal fibers” Opt. Express. 15, 15365–15376 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- C. Martelli, J. Canning, D. Stocks, M. J. Crossley, “Water soluable porphyrin in pure silica photonic crystal fiber” Opt. Lett. 31, 2100–2102 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Holdsworth et al., “Illuminating the core of photonic crystal fiber” presented at the Australian Conference on Optical Fibre Technology, Sydney, Australia, 7-10 July 2008. [Google Scholar]
- H. Sørensen, J. B. Jensen, F. Bruyere, and K. P. Hansen, “Practical hydrogen loading of air silica fibers” presented at Bragg Gratings, Photosensitivity and Poling, Sydney, Australia, 4-9 July 2005. [Google Scholar]
- V. Beugin, L. Bigot, P. Niay, M. Lancry, Y. Quiquempois, M. Douay, G. Mélin, A. Fleureau, S. Lempereur, and L. Gasca, “Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber” Appl. Opt. 45, 8186–8193, (2006). [NASA ADS] [CrossRef] [Google Scholar]
- B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter, and T.A. Strasser, “Grating resonances in air-silica microstructured optical fibers” Opt. Lett. 24, 1460–1462 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- M. C. Phan Huy, G. Laffont, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J.-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier, “Fiber Bragg grating photowriting in microstructured optical fibers for refractive index measurements” Meas. Sci. Technol. 17, 992–997, (2006). [NASA ADS] [CrossRef] [Google Scholar]
- H. Sørensen, J. Canning, J. Lægsgaard, K. Hansen, and P. Varming, “Liquid filling of photonic crystal fibers for grating writing” Opt. Commun. 270, 207–210 (2007). [CrossRef] [Google Scholar]
- N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, “Bragg gratings in air-silica structured fibers” Opt. Lett. 4, 233–235 (2003). [CrossRef] [Google Scholar]
- N. Groothoff, J. Canning, N. Jovanovic, G. D. Marshall, and M. J. Withford, “Gratings in large diameter air-clad optical fibre using a femtosecond laser” presented at Bragg Gratings, Photosensitivity and Poling, Quebec City, Canada, 2-6 September 2007. [Google Scholar]
- http://www.crystal-fibre.com/datasheets/NL-1550-POS-1.pdf [Google Scholar]
- K. P. Hansen, “Dispersion flattened hybrid core nonlinear photonic crystal fiber” Opt. Express 11, 1503–1509 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- L. Dong, W. F. Liu, and L. Reekie, “Negative index gratings formed by a 193-nm excimer laser” Opt. Lett. 21, 2032–2034 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- L. Dong, and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193nm in a boroncodoped germanosilicate fiber” Appl. Opt. 36, 8222–8226 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- N. Groothoff, and J. Canning, “Enhanced type IIA gratings for high-temperature operation” Opt. Lett. 29, 2360–2362 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- M. Sceats, and J. Canning, Proceedings of Summer School on Photosensitivity in Optical Waveguides and Glasses, H.G. Limberger, ed., (Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland, 1998). [Google Scholar]
- J. Canning, and A. L. G. Carter, “Modal interferometer in situ measurements of induced core index change in optical fibers” Opt. Lett. 22, 561–563 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- D. Káèik, I. Turek, I. Martinèek, J. Canning, N. A. Issa, and K. Lyytikäinen, “Intermodal interference in a photonic crystal fibre” Opt. Express 12, 3465–3470 (2004). [CrossRef] [Google Scholar]
- N. A. Issam, and L. Poladian, “Vector wave expansion method for leaky modes of microstructured optical fibres” J. Lightwave Technol. 21, 1005–12 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, “Thermal decay of Bragg gratings written in boron and germanium codoped silica fiber” J. Lightwave Technol. 15, 1470 (1997). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.