Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
|
|
---|---|---|
Article Number | 08015 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.2971/jeos.2008.08015 | |
Published online | 17 April 2008 |
- T. Stone, N. George, “Hybrid diffractive–refractive lenses and achromats” Appl. Optics 27, 2960–2971 (1988). [NASA ADS] [CrossRef] [Google Scholar]
- R. Brunner, R. Steiner, K. Rudolf, and H. J. Dobschal, “Diffractive–Refractive Hybrid Microscope Objective for 193 nm Inspection Systems” Proc. SPIE 5177, 9–15 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- R. Brunner, R. Steiner, H. J. Dobschal, D. Martin, M. Burkhardt, and M. Helgert, “New Solution to Realize Complex Optical Systems by a Combination of Diffractive and Refractive Optical Components” Proc. SPIE 5183, 47–55 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- R. Brunner, A. Menck, R. Steiner, G. Buchda, S. Weissenberg, U. Horn, and A. Zibold, “Immersion Mask Inspection with Hybrid Microscopic System at 193 nm” Proc. SPIE 5567, 887–893 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- H. J. Dobschal, “Two examples for the effective use of hybrid optics” EOS Top. Meet. Diffractive Optics, 84–85 (2007). [Google Scholar]
- C. Sauvan, P. Lalanne, and M.-Si L. Lee, “Broadband blazing with artificial dielectrics” Opt. Lett. 29, 1593–1595 (2004). [CrossRef] [PubMed] [Google Scholar]
- E. Popov, B. Bozhkov, and M. Neviere, “Almost Perfect Blazing by Photonic Crystal Rod Gratings” Appl. Optics 40, 2417–2422 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- S. M. Ebstein, “Nearly index–matched optics for aspherical, diffractive, and achromatic–phase diffractive elements” Opt. Lett. 21, 1454–1456 (1996). [CrossRef] [Google Scholar]
- Y. Arieli, S. Ozeri, and N. Eisenberg, “Design of a diffractive optical element for wide spectral bandwidth” Opt. Lett. 23, 823–824 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- T. Nakai, “Diffractive optical element” European Patent Specification EP 965 864 B1 (1998). [Google Scholar]
- T. Nakai, and H. Ogawa, “Research on multi–layer diffractive optical elements and their application to camera lenses” OSA Tech. Dig. of DOMO Conf., Rochester, 5–7 (2002). [Google Scholar]
- T. Nakai, “Diffractive optical element and optical system having the same” European Patent Specification EP 898 182 B1 (1997). [Google Scholar]
- A. Schilling, K. J. Weible, and H. P. Herzig, “Diffractive structures with high, wavelength independent efficiency” EOS Top. Meet. Dig. Ser. 22, 16–17 (1999). [Google Scholar]
- K. J. Weible, A. Schilling, H. P. Herzig, and D. Lobb, “Achromatization of the diffraction efficiency of diffractive optical elements” Proc. SPIE 3749, 378–379 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- A. Schilling and H. P. Herzig, “Optical System Design Using Microoptics” in Encyclopedia of Optical Engineering, R. G. Driggers, ed., 1830–1842 (Marcel Dekker Inc., New York, 2003). [Google Scholar]
- B. Achtner, F. O. Karutz, M. Pollmann, and M. Seeßelberg, “Videobrille für das Kino unterwegs” Photonik 40, 40–43 (2008). [Google Scholar]
- M. D. Missing and G. Michael Morris, “Diffractive optics applied to eyepieces design” Appl. Optics 34, 2452–2461 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- O. Sandfuchs, D. Pätz, S. Sinzinger, A. Pesch, and R. Brunner, “Analysis of the influence of the passive facet of blazed transmission gratings in the intermediate diffraction regime” J. Opt. Soc. Am. A 25, (2008). [Google Scholar]
- D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms” Appl. Optics 28, 976–983 (1989). [CrossRef] [Google Scholar]
- B. H. Kleemann, A. Mitreiter, and F. Wyrowski, “Integral equation method with parametrization of grating profile – Theory and experiments” J. Mod. Optic. 43, 1323–1349 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- A. Rathsfeld, G. Schmidt, and B. H. Kleemann, “On a Fast Integral Equation Method for Diffraction Gratings” Commun. Comput. Phys. 1, 984–1009 (2006). [Google Scholar]
- H. Ukuda, “Optical material, and optical element, optical system and laminated diffractive optical element using it”, European Patent Application EP 1 394 574 (2003). [Google Scholar]
- W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed–index media fabricated by zero–order gratings” Opt. Lett. 16, 1921–1923 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff” J. Opt. Soc. Am. A 16, 1143–1156 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth–order effective–medium theory” J. Opt. Soc. Am. A 16, 1157–1167 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- Mane-Si Laure Lee, P. Lalanne, P. Chavel, and E. Cambril, “Imaging with blazed–binary diffractive elements” Proc. SPIE on Physics, Theory, and Applications of Periodic Structures in Optics, P. Lalanne, ed., 4438, 62–68 (2001). [CrossRef] [Google Scholar]
- B. H. Kleemann, J. Ruoff, and R. Arnold, “Area–coded effective medium structures, a new type of grating design” Opt. Lett. 30, 1617–1619 (2005). [CrossRef] [Google Scholar]
- Information from GRINTECH AG in 2004. [Google Scholar]
- R. P. Salmio, J. Saarinen, J. Turunen, and A. Tervonen, “Graded–index diffractive structures fabricated by thermal ion exchange” Appl. Optics 36, 2048–2057 (1997). [CrossRef] [Google Scholar]
- T. Vahrenkamp, H. Kreitlow, H. Schütte, and C. Thoma, “DOE aus Glas für den Nd:YAG–Laser” Photonik 3, 6–8 (2002). [Google Scholar]
- J. Teteris, “Holographic recording in amorphous chalcogenide thin films” Current Opinion in Solid State and Material Science 7, 127–134 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- T. Buffeteau, F. Lagugnè Labarthet, C. Sourisseau, S. Kostromine, and T. Bieringer, “Biaxial orientation induced in a photoaddressable azopolymer thin film as evidenced by polarized UV–Visible, infrared, and Raman spectra” Macromolecules 37, 2880–2889 (2004). [CrossRef] [Google Scholar]
- R. Hagen and T. Bieringer, “Photoaddressable polymers for data storage” Advanced Mat. 13 1805–1810 (2001) [NASA ADS] [CrossRef] [Google Scholar]
- J. M. Tsui, C. Thompson, V. Mehta, J. M. Roth, V. I. Smirnov, and L. B. Glebov, “Coupled–wave analysis of apodized volume gratings” Opt. Express 12, 6642–6653 (2004). [CrossRef] [Google Scholar]
- J. Yeh, A. Harton, and K. Wyatt, “Reliability study of holographic optical elements made with DuPont photopolymer” Appl. Optics 37, 6270–6274 (1998). [NASA ADS] [CrossRef] [Google Scholar]
- S. M. Rytov, “Electromagnetic properties of a finely stratified medium” Sov. Phys. JETP-USSR 2 466–475, (1956). [Google Scholar]
- http://www.texloc.com/closet/cl_refractiveindex.html [Google Scholar]
- M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, C. G. Willson, “Step and Flash Imprint Lithography: A new approach to high-resolution patterning” Proc. SPIE on Microlithography 3676, 379–389 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- http://www.cargille.com [Google Scholar]
- D. Mund, K. M. Hammerl, “Building up diffractive optics by structured glass coatings” Patent Application Publication WO 2005 121 842 A1 [Google Scholar]
- http://en.wikipedia.org/wiki/Tetris [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.