Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
|
|
---|---|---|
Article Number | 08005 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2971/jeos.2008.08005 | |
Published online | 25 January 2008 |
- P. S. Russell, T. Birks, and F. Dominic Lloyd-Lucas, “Photonic Bloch waves and photonic band gap”, in Confined electrons and photons (Plenum Press, 1995), pp. 585–633. [CrossRef] [Google Scholar]
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics” Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed] [Google Scholar]
- S. John, “Strong localization of photons in certain disordered dielectric superlattices” Phys. Rev. Lett. 58, 2486 (1987). [NASA ADS] [CrossRef] [Google Scholar]
- N. Ashcroft and N. Mermin, Solid state physics (Brooks/Cole, 1976). [Google Scholar]
- P. S. Russell, “Interference of integrated Floquet-Bloch waves” Phys. Rev. A 33, 3232 (1986). [NASA ADS] [CrossRef] [Google Scholar]
- D. Coevorden, R. Sprik, A. Tip, and A. Lagendijk, “Photonic band structure of atomic lattices” Phys. Rev. Lett. 77, 2412 (1996). [CrossRef] [Google Scholar]
- M. Erementchouk, L. Deych, and A. Lisyansky, “Optical properties of one-dimensional photonic crystals based on multiple-quantum-well structures” Phys. Rev. B 71, 235335 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- C. Adams and E. Riis, “Laser Cooling and Trapping of Neutral Atoms” Prog. Quant. Electron. 21, 1 (1997). [CrossRef] [Google Scholar]
- O. Morsch and M. Oberthaler, “Dynamics of Bose-Einstein condensates in optical lattices” Rev. Mod. Phys. 78, 179 (2006). [CrossRef] [Google Scholar]
- D. Jaksch, C. Bruder, J. Cirac, C. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices” Phys. Rev. Lett. 81, 3108 (1998). [CrossRef] [Google Scholar]
- M. Greiner, O. Mandel, T. Esslinger, T. Hansch, and I. Bloch, “Quantum phase transition from a supefluid to a Mott insulator in a gas of ultracold atoms” Nature 415, 39 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- Z. Gaburro, M. Ghulinyan, F. Riboli, L. Pavesi, A. Recati, and I. Carusotto, “Photon energy lifter” Opt. Express 14, 7270 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Processus d’interaction entre photon et atomes (CNRS Editions, 1996). [CrossRef] [Google Scholar]
- J. Hopfield, “Theory of contribution of excitons to the complex dielectric constant of crystals” Phys. Rev. 112, 1555 (1958). [NASA ADS] [CrossRef] [Google Scholar]
- M. Artoni and J. Birman, “Quantum-optical properties of polariton waves” Phys. Rev. B 44, 3736 (1991). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field” Phys. Rev. B 72, 115303 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters”, Phys. Rev. A 74, 033811 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum Vacuum Radiation Spectra form a Semiconductor Microcavity with a Time-Modulated Vacuum Rabi Frequency” Phys. Rev. Lett. 98, 103602 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- I. Carusotto, M. Antezza, F. Bariani, S. De Liberato, and C. Ciuti, “Optical properties of atomic Mott insulators: from slow light to dynamical Casimir effects”, pre-print arXiv:0711.3105. [Google Scholar]
- Y. Chong, D. Pritchard, and M. Soljačić, “Quantum theory of a resonant photonic crystal” Phys. Rev. B 75, 235124 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- H. Zoubi and H. Ritsch, “Excitons and cavity polaritons for ultracold atoms in an optical lattice” Phys. Rev. A 76, 013817 (2007). [NASA ADS] [CrossRef] [Google Scholar]
- K. Kempa, R. Ruppin, and J. Pendry, “Electromagnetic response of a point-dipole crystal” Phys. Rev. B 72, 205103 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- T. Ikawa and K. Cho, “Fate of the superradiant mode in a resonant Bragg reflector” Phys. Rev. B 66, 085338 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- I. Deutsch, R. Spreeuw, S. Rolston, and W. Phillips, “Photonic band gaps in optical lattices” Phys. Rev. A 52, 1394 (1995). [NASA ADS] [CrossRef] [Google Scholar]
- M. Artoni, G. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals” Phys. Rev. E 72, 046604 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- M. Artoni and G. La Rocca, “Optically Tunable Photonic Stop Bands in Homogeneous Absorbing Media” Phys. Rev. Lett. 96, 073905 (2006). [CrossRef] [Google Scholar]
- M. Erementchouk, L. Deych, and A. Lisyansky, “Spectral properties of exciton polaritons in one-dimensional resonant photonic crystals” Phys. Rev. B 73, 115321 (2006). [NASA ADS] [CrossRef] [Google Scholar]
- J. Jackson, Classical electrodynamics (Wiley, New York, 1998). [Google Scholar]
- J. Wait, Electromagnetic waves in stratified media (Pergamon, 1970). [Google Scholar]
- E. Arimondo, “Coherent Population Trapping in Laser Spectroscopy” Prog. Optics 35, 257 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- S. Harris, “Electromagnetically Induced Transparency” Phys. Today 50, 36 (1997). [NASA ADS] [CrossRef] [Google Scholar]
- A. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. Welch, A. Zibrov, and M. Scully, “Slow, Ultraslow, Stored and Frozen Light” Adv. At. Mol. Opt. Phys. 46, 191 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas” Nature 397, 594 (1999). [NASA ADS] [CrossRef] [Google Scholar]
- S. Yoo, “Wavelength Conversion Technologies for WDM Network Applications” J. Lightwave Technol. 14, 955 (1996). [NASA ADS] [CrossRef] [Google Scholar]
- M. Yanik and S. Fan, “Dynamic Photonic Structures: Stopping, Storage and Time Reversal of Light” Stud. Appl. Math. 115, 233 (2005). [CrossRef] [Google Scholar]
- J. Brehm and W. Mullin, Introduction to the structure of matter (Wiley, 1989). [Google Scholar]
- See, e.g., D. Steck, Alkali D line data, available at the web page: http://steck.us/alkalidata/. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.