Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 3, 2008
Article Number 08001
Number of page(s) 6
DOI https://doi.org/10.2971/jeos.2008.08001
Published online 21 January 2008
  1. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization (Cambridge University Press, 2001). [CrossRef] [Google Scholar]
  2. S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems” Phys. Rep. 366, 1(2002). [NASA ADS] [CrossRef] [Google Scholar]
  3. J. Garcia-Ojalvo and R. Roy, “Spatiotemporal Communication with Synchronized Optical Chaos” Phys. Rev. Lett. 86, 5204 (2000). [Google Scholar]
  4. I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication” Phys. Rev. A 62, 011801 (2000). [CrossRef] [Google Scholar]
  5. R. Neubecker, B. Thüring, M. Kreuzer, and T. Tschudi, “Pattern formation in nonlinear optical systems” Chaos Soliton. Fract. 10, 681 (1999). [CrossRef] [Google Scholar]
  6. G. Hu, J. Xiao, J. Yang, F. Xie, and Z. Qu, “Synchronization of spatiotemporal chaos and its applications” Phys. Rev. E 56, 2738 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  7. A. A. Koronovskii, P. V. Popov, and A. E. Hramov, “Generalized Chaotic Synchronization in Coupled Ginzburg-Landau Equations” 103, 654 (2006). [Google Scholar]
  8. R. Neubecker, E. Benkler, R. Martin, and G. L. Oppo, “Manipulation and Removal of Defects in Spontaneous Optical Patterns” Phys. Rev. Lett. 91, 113903 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  9. R. Neubecker and A. Zimmermann, “Spatial forcing of spontanous optical patterns” Phys. Rev. E 65, 035205(R) (2002). [NASA ADS] [CrossRef] [Google Scholar]
  10. W. J. Firth, “Spatial instabilities in a Kerr medium with single feedback mirror” J. Mod. Optic. 37, 151 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  11. R. Neubecker, G.-L. Oppo, B. Thüring, and T. Tschudi, “Pattern formation in a liquid-crystal light valve with feedback, including polarisation, saturation and internal threshold effects” Phys. Rev. A 52, 791–808 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  12. R. Neubecker, G. L. Oppo, B. Thuering, and T. Tschudi, “Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects” Phys. Rev. A 52, 791 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  13. P. L. Ramazza, S. Ducci, S. Boccaletti, and F. T. Arecchi, “Localized versus delocalized patterns in a nonlinear optical interferometer” J. Opt. B 2, 399 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  14. M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium” Rev. Mod. Phys. 65, 851 (1993). [NASA ADS] [CrossRef] [Google Scholar]
  15. G. Schliecker and R. Neubecker, “Voronoi analysis of the breakdown of order in spontaneous optical spot patterns” Phys. Rev. E. 61, R997 (2000). [NASA ADS] [CrossRef] [Google Scholar]
  16. M. L. Berre, A. S. Patrascu, E. Ressayre, and A. Tallet, “Localized structures in chaotic patterns: From disorder to ordering” Phys. Rev. A 56, 3150 (1997). [CrossRef] [Google Scholar]
  17. M. Born and E. Wolf, principles of optics (Pergamon Press, 1964). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.