Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 2, 2007
Article Number 07030
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2007.07030
Published online 16 November 2007
  1. A. Luis, “Scalar Wigner function for vectorial fields and spatialangular Stokes parameters” Opt. Commun. 246, 437–443 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  2. A. Luis, “Properties of spatial-angular Stokes parameters” Opt. Commun. 251, 243–253 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  3. A. Luis, “Spatial-angular Mueller matrices” Opt. Commun. 263, 141–146 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  4. A. Luis, “Overall degree of coherence for vectorial electromagnetic fields and the Wigner function” J. Opt. Soc. Am. A 24, 2070–2074 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  5. B. Karczewski, “Degree of coherence of the electromagnetic field” Phys. Lett. 5, 191–192 (1963). [NASA ADS] [CrossRef] [Google Scholar]
  6. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams” Phys. Lett. A 312, 263–267 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  7. S. A. Ponomarenko and E. Wolf, “The spectral degree of coherence of fully spatially coherent electromagnetic beams” Opt. Commun. 227, 73–74 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  8. E. Wolf, “Comment on ’Complete electromagnetic coherence in the space-frequency domain” Opt. Lett. 29, 1712 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  9. F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations” Opt. Lett. 32, 588–590 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  10. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, “Effects of coherence on the degree of polarization in a Young interference pattern” Opt. Lett. 31, 688–670 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  11. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields” Opt. Express 11, 1137–1143 (2003). [CrossRef] [Google Scholar]
  12. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain” Opt. Lett. 29, 328–330 (2004). [CrossRef] [Google Scholar]
  13. T. Setälä, J. Tervo, and A. T. Friberg, “Reply to comment on ’Complete electromagnetic coherence in the space-frequency domain”’ Opt. Lett. 29, 1713–1714 (2004). [CrossRef] [Google Scholar]
  14. P. Vahimaa and J. Tervo, “Unified measures for optical fields: degree of polarization and effective degree of coherence” J. Opt. A: Pure Appl. Op. 6, S41–S44 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  15. T. Setälä, J. Tervo, and A. T. Friberg, “Stokes parameters and polarization contrasts in Young’s interference experiment” Opt. Lett. 31, 2208–2210 (2006). [CrossRef] [Google Scholar]
  16. T. Setälä, J. Tervo, and A. T. Friberg, “Contrasts of Stokes parameters in Young’s interference experiment and electromagnetic degree of coherence” Opt. Lett. 31, 2669–2671 (2006). [CrossRef] [Google Scholar]
  17. J. Tervo, T. Setälä, and A. T. Friberg, “Theory of partially coherent electromagnetic fields in the space-frequency domain” J. Opt. Soc. Am. A 21, 2205–2215 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  18. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light” Opt. Express 13, 6051–6060 (2005). [CrossRef] [Google Scholar]
  19. P. Réfrégier and A. Roueff, “Coherence polarization filtering and relation with intrinsic degrees of coherence” Opt. Lett. 31, 1175–1177 (2006). [CrossRef] [Google Scholar]
  20. P. Réfrégier, “Symmetries in coherence theory of partially polarized light” J. Math. Phys. 48, 033303 (2007). [CrossRef] [Google Scholar]
  21. H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence” J. Opt. Soc. Am. A 19, 1563–1571 (2002). [CrossRef] [Google Scholar]
  22. A. Luis, “Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices” J. Opt. Soc. Am. A 24, 1063–1068 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  23. A. Luis, “Ray picture of polarization and coherence in a Young interferometer” J. Opt. Soc. Am. A 23, 2855–2860 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  24. D. Dragoman, “The Wigner distribution function in optics and optoelectronics” Prog. Optics 37, 1–56 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  25. A. Torre, Linear Ray and Wave Optics in Phase Space (Elsevier, Amsterdam, The Netherlands, 2005). [Google Scholar]
  26. M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems” Opt. Commun. 25, 26–30 (1978). [NASA ADS] [CrossRef] [Google Scholar]
  27. M. J. Bastiaans, “Wigner distribution function and its application to first-order optics” J. Opt. Soc. Am. 69, 1710–1716 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  28. R. Simon and N. Mukunda, “Optical phase space, Wigner representation, and invariant quality parameters” J. Opt. Soc. Am. A 17, 2440–2463 (2000). [CrossRef] [Google Scholar]
  29. A. T. Friberg, “On the existence of a radiance function for finite planar sources of arbitrary states of coherence” J. Opt. Soc. Am. A 69, 192–198 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  30. E. C. G. Sudarshan, “Quantum theory of radiative transfer” Phys. Rev. A 23, 2802–2809 (1981). [NASA ADS] [CrossRef] [Google Scholar]
  31. E. C. G. Sudarshan, “Quantum electrodynamics and light rays” Physica A 96, 315–320 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  32. E. C. G. Sudarshan, “Pencils of rays in wave optics” Phys. Lett. A 73, 269–272 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  33. A. Luis, “Complementary Huygens principle for geometrical and nongeometrical optics” Eur. J. Phys. 28, 231–240 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  34. M. J. Bastiaans, “New class of uncertainty relations for partially coherent light” J. Opt. Soc. Am. A 1, 711–715 (1984). [NASA ADS] [CrossRef] [Google Scholar]
  35. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light” J. Opt. Soc. Am. A 3, 1227–1238 (1986). [NASA ADS] [CrossRef] [Google Scholar]
  36. H. Lajunen, P. Vahimaa, and J. Tervo, “Theory of spatially and spectrally partially coherent pulses” J. Opt. Soc. Am. A 22, 1536–1545 (2005). [CrossRef] [Google Scholar]
  37. M. A. Alonso, “Radiometry and wide-angle wave fields III: partial coherence” J. Opt. Soc. Am. A 18, 2502–2511 (2001). [CrossRef] [Google Scholar]
  38. A. Luis, “Negativity, diffraction and interference for nongeometrical waves” Opt. Commun. 266, 426–432 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  39. J. C. Várilly and J. M. Gracia-Bondía, “The Moyal representation for spin” Ann. Phys. (N. Y.) 190, 107–148 (1989). [CrossRef] [Google Scholar]
  40. J. M. Gracia-Bondía, T. W. Marshall, and E. Santos, “A phase-space description of the Stern-Gerlach phenomenon” Phys. Lett. A 183, 19–23 (1993). [CrossRef] [Google Scholar]
  41. J. M. Gracia-Bondía and J. C. Várilly, “Phase-space representation for Galilean quantum particles of arbitrary spin” J. Phys. A 21, L879–L884 (1988). [CrossRef] [Google Scholar]
  42. A. Luis, “Polarization ray picture of coherence for vectorial electromagnetic waves” Phys. Rev. A 76, 043827 (2007). [NASA ADS] [CrossRef] [Google Scholar]
  43. R. Martínez-Herrero and P. M. Mejías, “Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields” Opt. Lett. 32, 1471–1473 (2007). [CrossRef] [Google Scholar]
  44. F. Gori, M. Santarsiero, and R. Borghi, “Vector mode analysis of a Young interferometer” Opt. Lett. 31, 858–860 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  45. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Vector-mode analysis of symmetric two-point sources” J. Opt. A: Pure Appl. Op. 9, 593–602 (2007). [CrossRef] [Google Scholar]
  46. R. Barakat, “Degree of polarization and the principal idempotents of the coherency matrix” Opt. Commun. 23, 147–150 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  47. J. C. Samson and J. V. Olson, “Generalized Stokes vectors and generalized power spectra for second-order stationary vector-processes” SIAM J. Appl. Math. 40, 137–149 (1981). [CrossRef] [Google Scholar]
  48. A. Luis, “Maximum visibility in interferometers illuminated by vectorial waves” Opt. Lett. 32, 2191–2193 (2007). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.