Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 2, 2007
Article Number 07026
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2007.07026
Published online 16 August 2007
  1. C. Gorecki, “Optical waveguides and silicon-based micromachined architectures” in MEMS and MOEMS – Technology and Applications, (SPIE Press, Bellingham, 2000). [Google Scholar]
  2. M. Tabib-Azar, G. Beheim, “Modern trends in microstructures and integrated optics for communication, sensing, and actuation” Opt. Eng. 36, 1307 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  3. K. E. Burcham, G. N. De Brabander, J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide” Proc. SPIE 1793, 12 (1992). [Google Scholar]
  4. E. Bonnotte, C. Gorecki, H. Toshiyoshi, H. Kawakatsu, H. Fujita, K. Wörhoff, K. Hashimoto, “Guided wave acoustooptic interaction with phase modulation in a ZnO thin-film transducer on an Si-based integrated Mach-Zehnder interferometer” J. Lightwave Technol. 17, 35 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  5. W. Huang, R. M. Shubair, A. Nathan, and Y. L. Chow, “The modal characteristics of ARROW structures” J. Lightwave Technol. 10, 1015 (1992). [CrossRef] [Google Scholar]
  6. K. Fischer, J Muller, R Hoffmann, F. Wasse and D. Salle, “Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor” J. of Lightwave Technology 12 163 (1994). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. Ohkawa, M. Izutsu, and T. Sueta, “Integrated optic pressure sensor on silicon substrate” Appl. Optics 28, 5153 (1989). [CrossRef] [Google Scholar]
  8. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si” Appl. Optics 26, 2621 (1987). [CrossRef] [Google Scholar]
  9. W. Gleine, J. Müller, “Low-pressure chemical vapor deposition silicon_oxinitride films for integrated optics” Appl. Optics 31, 2036 (1992). [NASA ADS] [CrossRef] [Google Scholar]
  10. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components” Opt. Quant. Electron. 22, 391 (1990). [CrossRef] [Google Scholar]
  11. S. Valette, S. Renard, J.P. Jadot, P. Guidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications” Sensor. Actuator. A21-A23, 1087 (1990). [NASA ADS] [CrossRef] [Google Scholar]
  12. H. Bezzaoui, E. Voges, “Integrated optics combined with micromechanics on silicon” Sensor. Actuator. A29, 219 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  13. C. Gorecki, F. Chollet, E. Bonnotte, H. Kawakatsu, “Silicon-based integrated interferometer with phase modulation driven by acoustic surface waves” Opt. Lett. 22, 1784 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  14. S. M. Sze, VLSI Technology (McGraw-Hill, New York, 1988). [Google Scholar]
  15. L. Nieradko, C. Gorecki, M. Józwik, A. Sabac, R. Hoffmann, A. Bertz, “Fabrication and optical packaging of an integrated Mach-Zehnder interferometer on top of a moveable micromirror” J. Microlith. Microfab. 5, 023009/1 (2006). [Google Scholar]
  16. C. Gorecki, “Association of MEMS technology with Integrated Optics: demonstration of active membrane in-situ read-out by monolithic integration of silicon-based Mach Zehnder interferometer” Optica Pura y Applicada 38, 65 (2005). [Google Scholar]
  17. K. Wörhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, Th. J. A. Popma “Plasma Enhanced Chemical Vapor Deposition Silicon Oxynitride for Application in Integrated Optics” Sensor. Actuator. 74, 9–12 (1999). [CrossRef] [Google Scholar]
  18. R. Germann, H.W.M. Salemink, R. Beyeler, G.L. Bona, F. Horst, I. Massarek and B.J. Offrein, “Silicon oxynitride layers for optical waveguide applications” J. Electrochemical Soc. 147, 2237 (1999). [Google Scholar]
  19. W. A. Lanford, and M.J. Rand, “The hydrogen content of plasma-deposited silicon nitride” J. Appl. Phys. 49, 2473 (1978). [NASA ADS] [CrossRef] [Google Scholar]
  20. R. Chow, and R. S. Rosler, “Hydrogen content of a variety of plasma-deposited silicon nitrides” J. Appl. Phys. 53, 5630 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  21. M. Jozwik, C. Gorecki, A. Sabac, P. Delobelle, and M. Kujawinska “Evaluation of micromechanical properties of buckled SiOxNy loaded membranes combining the Twyman-Green interferometry with nanoindentation and point-wise deflection technique” Opt. Laser. Eng. 41/5, 703 (2003). [Google Scholar]
  22. C. Gorecki, A. Sabac, M. Józwik, S.S. Lee, “Characterisation of internal stress of silicon oxinitride thin films fabricated by plasma-enhanced chemical vapour deposition: applications in Integrated Optics” Proc. SPIE 4596, (2001). [Google Scholar]
  23. M. Józwik, P. Delobelle, C. Gorecki, A. Sabac, L. Nieradko, C. Meunier, F. Munnik, “Optomechanical characterisation of compressively prestressed silicon oxynitride films deposited by plasma-enhanced chemical vapour deposition on silicon membranes” Thin Solid Films 468, 84 (2004). [CrossRef] [Google Scholar]
  24. C. M. M. Denisse, K. Z. Troost, J. B. Oude Elferink, F. H. P. M. Habraken, W. F. van der Weg, and M. Hendriks “Plasma-enhanced growth and composition of silicon oxynitride films” J. Appl. Phys. 60, 2536 (1986). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.