Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 2, 2007
Article Number 07015
Number of page(s) 7
DOI https://doi.org/10.2971/jeos.2007.07015
Published online 04 May 2007
  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging” Phys. Med. Biol. 50, R1–R43 (2005). [CrossRef] [Google Scholar]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, et al., “Imaging the body with diffuse optical tomography” IEEE Signal Proc. Mag. 18, 57–75 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  3. J. C. Hebden, A. Gibson, R. M. Yusof, et al., “Three-dimensional optical tomography of the premature infant brain” Phys. Med. Biol. 47, 4155–4166 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  4. S. R. Arridge and M. Schweiger, “Image reconstruction in optical tomography” Philos. T. R. Soc. B 352, 717–726 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  5. W. W. Zhu, Y. Wang, and J. Zhang, “Total least-squares reconstruction with wavelets for optical tomography” J. Opt. Soc. Am. A 15, 2639–2650 (1998). [CrossRef] [Google Scholar]
  6. S. R. Arridge and M. Schweiger, “A gradient-based optimisation scheme for optical tomography” Opt. Express 2, 213–226 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  7. M. Schweiger and S. R. Arridge, “Image reconstruction in optical tomography using local basis functions” J. Electron. Imaging 12, 583–593 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  8. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, et al., “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method” Inverse Probl. 22, 1509–1532 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  9. S. R. Arridge, O. Dorn, J. P. Kaipio, et al., “Reconstruction of sub-domain boundaries of piecewise constant coefficients of the radiative transfer equation from optical tomography data” Inverse Probl. 22, 2175–2196 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. J. Zhou, J. Bai, and P. He, “Spatial location weighted optimization scheme for DC optical tomography” Opt. Express 11, 141–150 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  11. J. C. Ye, K. J. Webb, C. A. Bouman, et al., “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  12. A. Torricelli, L. Spinelli, A. Pifferi, et al., “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multi-wavelength time-resolved optical mammography” Opt. Express 11, 853–867 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  13. L. Spinelli, A. Torricelli, A. Pifferi, et al., “Experimental test of a perturbation model for time-resolved imaging in diffusive media” Appl. Optics 42, 3145–3153 (2003). [NASA ADS] [CrossRef] [Google Scholar]
  14. S. R. Arridge, “Optical tomography in medical imaging” Inverse Probl. 15, R41–R93 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  15. S. R. Arridge, “Photon-Measurement Density-Functions. 1. Analytical Forms” Appl. Optics. 34, 7395–7409 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  16. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. 2. Modelling and reconstruction” Phys. Med. Biol. 42, 841–853 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  17. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography” Opt. Lett. 23, 882–884 (1998). [NASA ADS] [CrossRef] [Google Scholar]
  18. S. J. Matcher, “Nonuniqueness in optical tomography: relevance of the P1 approximation” Opt. Lett. 24, 1729–1731 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  19. A. E. Profio, “Light transport in tissue” Appl. Optics 28, 2216–2222 (1989). [NASA ADS] [CrossRef] [Google Scholar]
  20. K. Andreas, An introduction to the mathematical theory of inverse problems (Springer-Verlag, New York, 1996). [Google Scholar]
  21. W. E. Heinz, H. Martin, and N. Andreas, Regularization of inverse problems (Kluwer Academic Publishers Dordrecht, The Netherlands, 2000). [Google Scholar]
  22. S. R. Arridge and M. Schweiger, “Photon-Measurement Density-Functions. 2. Finite-Element-Method Calculations” Appl. Optics 34, 8026–8037 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  23. M. Vauhkonen, “Electrical Impedance Tomography and Prior Information [Ph.D.Dissertation]” Kuopio University Publications C. Natural and Environmental Sciences 62, 50–64 (1997). [Google Scholar]
  24. T. Tu, Y. Chen, J. Zhang, et al., “Analysis on performance and optimization of frequency-domain near-infrared instruments” J. Biomed. Opt. 7, 643–649 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  25. S. R. Arridge, J. P. Kaipio, V. Kolehmainen, et al., “Approximation errors and model reduction with an application in optical diffusion tomography” Inverse Probl. 22, 175–195 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  26. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography” Opt. Express 1, 404–413 (1997). [NASA ADS] [CrossRef] [Google Scholar]
  27. S. N. Evans and P. B. Stark, “Inverse problems as statistics” Inverse Probl. 18, R55–R97 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  28. J. C. Ye, C. A. Bouman, K. J. Webb, et al., “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography” IEEE T. Image Process. 10, 909–922 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  29. K. Mosegaard and M. Sambridge, “Monte Carlo analysis of inverse problems” Inverse Probl. 18, R29–R54 (2002). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.