Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 2, 2007
Article Number 07012
Number of page(s) 3
DOI https://doi.org/10.2971/jeos.2007.07012
Published online 12 April 2007
  1. M. Born and E. Wolf, Principles of Optics (7th rev. ed., Ch. 9 and App. VII, Cambridge University Press, Cambridge, MA, 2001). [Google Scholar]
  2. D. Malacara, Optical Shop Testing (2nd ed., Wiley, 1992). [Google Scholar]
  3. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils” Appl. Optics. 33, 8121–8124 (1994). [CrossRef] [Google Scholar]
  4. R. J. Noll, “Zernike polynomials and atmospheric turbulence” J. Opt. Soc. Am. 66, 207–211 (1976). [NASA ADS] [CrossRef] [Google Scholar]
  5. See http://www.nijboerzernike.nl. [Google Scholar]
  6. A. Prata and W. V. T. Rusch, “Algorithm for computation of Zernike polynomials expansion coefficients” Appl. Optics 28, 749–754 (1989). [NASA ADS] [CrossRef] [Google Scholar]
  7. D. Calvetti, “A stochastic roundoff error analysis for the Fast Fourier Transform” Math. Comput. 56, 755–774 (1991). [NASA ADS] [CrossRef] [Google Scholar]
  8. See http://en.wikipedia.org/wiki/FastFouriertransform. [Google Scholar]
  9. A. J. E. M. Janssen and P. Dirksen, “Concise formula for the Zernike coefficients of scaled pupils”, J. Microlith. Microfab. Microsyst. 5, 030501 (2006). [Google Scholar]
  10. S. R. Deans, The Radon transform and some of its applications (Wiley, New York, 1983, Sec. 7.6, Eq. 6.11). [Google Scholar]
  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.