Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
Article Number 06032
Number of page(s) 4
DOI https://doi.org/10.2971/jeos.2006.06032
Published online 20 December 2006
  1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics” Nature 442, 381 – 386 (2006). [CrossRef] [PubMed] [Google Scholar]
  2. M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection” Appl. Phys. Lett. 82, 4648 – 4650 (2003). [CrossRef] [Google Scholar]
  3. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two–dimensional photonic crystal microcavity” Opt. Lett. 29, 1093 – 1095 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  4. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, “Microfluidic tunable photonic band–gap device” Appl. Phys. Lett. 84, 1838 – 1840 (2004). [NASA ADS] [CrossRef] [Google Scholar]
  5. H. Kurt and D. S. Citrin, “Coupled–resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region” Appl. Phys. Lett. 87, 241119 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  6. M. L. Adams, M. Lončar, A. Scherer, and Y. M. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing” IEEE J. Sel. Areas Commun. 23, 1348 – 1354 (2005). [CrossRef] [Google Scholar]
  7. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits” Opt. Lett. 31, 59 – 61 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  8. T. Hasek, H. Kurt, D. S. Citrin, and M. Koch, “Photonic crystals for fluid sensing in the subterahertz range” Appl. Phys. Lett. 89, 173508 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  9. S. Xiao and N. A. Mortensen, “Highly dispersive photonic band–gap–edge optofluidic biosensors” J. Eur. Opt. Soc., Rapid Publ. 1, 06026 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  10. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed] [Google Scholar]
  11. S. John, “Strong localization of photons in certain disordered dielectric superlattices” Phys. Rev. Lett. 58, 2486 – 2489 (1987). [NASA ADS] [CrossRef] [Google Scholar]
  12. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale” Rev. Mod. Phys. 77, 977 – 1026 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  13. G. M. Whitesides, “The origins and the future of microfluidics”, Nature 442 368 – 373 (2006). [CrossRef] [Google Scholar]
  14. N. A. Mortensen and S. Xiao, “Slow–light enhancement of Beer–Lambert–Bouguer absorption”, preprint (2006). [Google Scholar]
  15. N. A. Mortensen, L. H. Olesen, L. Belmon, and H. Bruus, “Electro-hydrodynamics of binary electrolytes driven by modulated surface potentials” Phys. Rev. E 71, 056306 (2005). [NASA ADS] [CrossRef] [Google Scholar]
  16. O. J. F. Martin, C. Girard, and A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement”, Phys. Rev. Lett. 74 526 – 529 (1995). [NASA ADS] [CrossRef] [Google Scholar]
  17. O. J. F. Martin, C. Girard, D. R. Smith, and S. Schultz, “Generalized field propagator for arbitrary finite–size photonic band gap structures”, Phys. Rev. Lett. 82 315 – 318 (1999). [CrossRef] [Google Scholar]
  18. S. G. Johnson and J. D. Joannopoulos, “Block–iterative frequency–domain methods for Maxwell’s equations in a planewave basis”, Opt. Express 8 173 – 190 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  19. P. Lodahl, A. F. van driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals”, Nature 430 654 – 657 (2004). [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.