Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
Article Number 06013
Number of page(s) 8
DOI https://doi.org/10.2971/jeos.2006.06013
Published online 12 September 2006
  1. P. Maker and R. Terhune, “Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength” Physical Review 137, 801–818 (1965). [Google Scholar]
  2. M. Duncan, J. Reintjes, and T. Manuccia, “Scanning coherent anti-Stokes Raman scattering microscope” Optics Letters 7, 350–352 (1982). [NASA ADS] [CrossRef] [Google Scholar]
  3. A. Zumbusch, G. Holtom, and X. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering” Physical Review Letters 82, 4142–4145 (1999). [NASA ADS] [CrossRef] [Google Scholar]
  4. G. Bjorklund, “Effects of Focusing on Third-Order Nonlinear Processes in Isotropic Media” IEEE Journal of Quantum Electronics 11, 287–296 (1975). [NASA ADS] [CrossRef] [Google Scholar]
  5. M. Müller, J. Squier, C. de Lange, and G. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching” Journal of Microscopy 197, 150–158 (2000). [CrossRef] [Google Scholar]
  6. M. Müller and J. M. Schins, “Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy” The Journal of Physical Chemistry B 106, 3715–3723 (2002). [CrossRef] [Google Scholar]
  7. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues” Biophysical Journal 89, 581–591 (2005). [CrossRef] [Google Scholar]
  8. E. O. Potma, C. L. Evans, and X. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging” Optics Letters 31, 241–243 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  9. M. Hashimoto and T. Araki, “Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy” Journal of the Optical Society of America A 18, 771–776 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  10. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanetic system” Royal Society of London Proceedings Series A 253, 358–379 (1959). [NASA ADS] [Google Scholar]
  11. A. Volkmer, J.-X. Cheng, and X. Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy” Physical Review Letters 87, 023901 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  12. J.-X. Cheng, A. Volkmer, and X. Xie, “Theoretical and experimental characterization of anti-Stokes Raman scattering microscopy” Journal of the Optical Society of America B 19, 1363–1375 (2002). [NASA ADS] [CrossRef] [Google Scholar]
  13. S. Akhmanov, A. Bunkin, S. Ivanov, and N. Koroteev, “Polarization active Raman spectroscopy and coherent Raman ellipsometry” Soviet Physics JETP 47, 667–677 (1978). [Google Scholar]
  14. J.-L. Oudar, R. Smith, and Y. Shen, “Polarization-sensitive coherent anti-Stokes Raman spectroscopy” Applied Physics Letters 34, 758–760 (1979). [NASA ADS] [CrossRef] [Google Scholar]
  15. J.-X. Cheng, L. D. Book, and X. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy” Optics Letters 26, 1341–1343 (2001). [CrossRef] [PubMed] [Google Scholar]
  16. Y. Shen, The Principles of Nonlinear Optics (Wiley Interscience, 1984). [Google Scholar]
  17. H. Lotem, J. R.T. Lynch, and N. Bloembergen, “Interference between Raman resonances in four-wave difference mixing” Physical Review A 14, 1748–1755 (1976). [NASA ADS] [CrossRef] [Google Scholar]
  18. S. Popov, Y. Svirko, and N. Zheludev, Susceptibility Tensors for Nonlinear Optics (Institute of Physics Publishing, Bristol and Philadelphia, 1995). [Google Scholar]
  19. M. Yuratich and D. Hanna, “Coherent anti-Stokes Raman spectroscopy (CARS) Selection rules, depolarization ratios and rotational structure” Molecular Physics 33, 671–682 (1977). [NASA ADS] [CrossRef] [Google Scholar]
  20. C. Otto, A. Voroshilov, S. Kruglik, and J. Greve, “Vibrational bands of luminescent zinc(II)-octaethylporphyrin using a polarizationsensitive microscopic multiplex CARS technique” Journal of Raman Spectroscopy 32, 495–501 (2001). [NASA ADS] [CrossRef] [Google Scholar]
  21. D. Kleinman, “Nonlinear Dielectric Polarization in Optical Media” Physical Review 126, 1977–1979 (1962). [NASA ADS] [CrossRef] [Google Scholar]
  22. D. Gachet, N. Sandeau, and H. Rigneault, “Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopy” in Biomedical Vibrational Spectroscopy III: Advances in Research and Industry, A. Mahadevan-Jansen and W. H. Petrich, eds., vol. 6093 p. 609309. (SPIE, 2006). [Google Scholar]
  23. S. Hess and W. Webb, “Focal Volume Optics and Experimental Artifacts in Confocal Fluorescence Correlation Spectroscopy” Biophysical Journal 83, 2300–2317 (2002). [CrossRef] [Google Scholar]
  24. A. Volkmer, “Vibrational imaging and microspectrometries based on coherent anti-Stokes Raman scattering microscopy” Journal of Physics D–Applied Physics 38, R59–R81 (2005). [CrossRef] [Google Scholar]
  25. N. Djaker, D. Gachet, N. Sandeau, P.-F. Lenne, and H. Rigneault, “Refractive effects in Coherent Anti-Stokes Raman Scattering (CARS) Microscopy” Applied Optics 45 (27), 7005–7011 (2006). [NASA ADS] [CrossRef] [Google Scholar]
  26. S. Druet, B. Attal, T. Gustafson, and J. Taran, “Electronic resonance enhancement of coherent anti-Stokes Raman scattering” Physical Review A 18, 1529–1557 (1978). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.