Open Access
Issue |
J. Eur. Opt. Soc.-Rapid Publ.
Volume 1, 2006
|
|
---|---|---|
Article Number | 06011 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.2971/jeos.2006.06011 | |
Published online | 02 September 2006 |
- A. Bjarklev, J. Broeng, A. S. Bjarklev, Photonic Crystal Fibres (Kluwer, Boston, MA, USA, 2003). [CrossRef] [Google Scholar]
- J. D. Shephard, F. Couny, P. S. J. Russell, J. D. Jones, J. C. Knight, D. P. Hand, “Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications” Appl. Opt. 44, 4582 – 4588 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. Johnson, J. Joannopoulos, “Block–iterative frequency–domain methods for Maxwell’s equations in a planewave basis” Opt. Express 8, 173–190 (2001). [NASA ADS] [CrossRef] [Google Scholar]
- G. J. Pearce, T. D. Hedley, D.M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals” Phys. Rev. B 71, 195108 (2005) [NASA ADS] [CrossRef] [Google Scholar]
- K. Saitoh and M. Koshiba, “Numerical Modeling of Photonic Crystal Fibers” J. Lightwave Technol. 23, 3580 – 3590 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- K. Saitoh and M. Koshiba, “Full–vectorial imaginary–distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers” IEEE J. Quantum Electron. 38, 927 – 933 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- V. F. Rodrígues–Esquerre, M. Koshiba, H. E. Hernández–Figueroa, “Finite-element analysis of photonic crystal cavities: time and frequency domains” J. of Lightwave Technol. 23, 1514 – 1521 (2005). [CrossRef] [Google Scholar]
- A. Cucinotta, S. Selleri, L. Vincetti, “Holey fiber analysis through the finite-element method” IEEE Phot. Technol. Lett. 14, 1530 – 1532 (2002). [CrossRef] [Google Scholar]
- F. Brechet, J. Marcou, D. Pagnoux, P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite-element method” Opt. Fiber Technol. 6, 181 – 191 (2000). [NASA ADS] [CrossRef] [Google Scholar]
- H.P. Uranus and H.J.W.M. Hoekstra, “Modeling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions” Opt. Express 12, 2795 – 2809 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- Comsol Multiphysics simulation environment (previously Femlab), electromagnetics module, http://www.comsol.com/products/electro/overview.php [Google Scholar]
- L. Zschiedrich, S. Burger, R. Klose, A. Schädle, F. Schmidt, “JCM-mode: an adaptive finite element solver for the computation of leaky modes” Proc. SPIE 5728, 192 – 202 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- S. Burger, R. Köhle, L. Zschiedrich, W. Gao, F. Schmidt, R. März, C. Nölscher, “Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation” Proc. SPIE 5992, 378 – 379 (2005). [NASA ADS] [Google Scholar]
- JCMmode is produced by JCMwave GmbH, Munich, Germany, www.jcmwave.com [Google Scholar]
- P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. Birks, J. Knight, and P. S. J. Russell, “Loss in solid–core photonic crystal fibers due to interface roughness scattering” Opt. Exp. 13, 7779 – 7793 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight and P. S. J. Russell, “Ultimate low loss of hollow–core photonic crystal fibers” Opt. Express 13, 236 – 244 (2005). [CrossRef] [Google Scholar]
- O. Schenk, K. Gärtner, “Solving unsymmetric sparse systems of linear equations with PARDISO” J. of Future Gen. Comp. Sys. 20, 475 – 487 (2004). [CrossRef] [Google Scholar]
- R. Holzlöhner, B. J. Mangan, D. Bonaccini, “Ultra–low loss hollow-core photonic crystal fibers at 589 nm for LGS-assisted AO” SPIE Conference on Advances in Adaptive Optics II, Orlando, FL, USA, May 2006, poster 6272 – 150. [Google Scholar]
- B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber” in Proc. Opt. Fiber. Commun. Conf. (2004), paper PDP24. [Google Scholar]
- N. A. Mortensen and M. D. Nielsen, “Modeling of realistic cladding structures for air–core photonic band-gap fibers” Opt. Lett. 29, 349 – 351 (2004). [NASA ADS] [CrossRef] [Google Scholar]
- P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround” Opt. Express 13, 8277 – 8285 (2005). [NASA ADS] [CrossRef] [Google Scholar]
- P. R. McIsaac, “Symmetry-induced modal characteristics of uniform waveguides I: summary of results” IEEE Trans. Microwave Theory Tech. MTT-23, 421 – 429 (1975). [NASA ADS] [CrossRef] [Google Scholar]
- P. R. McIsaac, “Symmetry–induced modal characteristics of uniform waveguides II: theory” IEEE Trans. Microwave Theory Tech. MTT-23, 429 – 433 (1975). [NASA ADS] [CrossRef] [Google Scholar]
- T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation” J. Opt. Soc. Am. B 19, 2322 – 2330 (2002). [NASA ADS] [CrossRef] [Google Scholar]
- R. Guobin, W. Zhi, L. Shuquin, J. Shuisheng, “Mode classification and degeneracy in photonic crystal fibers” Opt. Express 11, 1310 – 1321 (2003). [NASA ADS] [CrossRef] [Google Scholar]
- J. Pomplun, S. Burger, R. Holzlöhner, R. Klose, L. Zschiedrich, F. Schmidt, “FEM investigation of light propagation in hollow core photonic crystal fibers” Spring Meeting of the German Physical Society DPG, Frankfurt, Germany, March 2006, Talk Q 59.5. [Google Scholar]
- P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T.A. Birks, J.C. Knight and P. S. J. Russell, “Control of dispersion in photonic crystal fibers” J. of Opt. and Fiber Comm. Reports 2, 435 – 461 (2005). [CrossRef] [Google Scholar]
- J.C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions” SIAM J. of Optimization 9, 112 – 147 (1998). [CrossRef] [Google Scholar]
- R. Simon, E. C. G. Sudarshan, N. Mukunda, “Gaussian–Maxwell beams” J. Opt. Soc. Am. A 3, 536 – 540 (1986). [NASA ADS] [CrossRef] [Google Scholar]
- E.-G. Neumann, Single–Mode Fibers — Fundamentals (Springer-Verlag, Berlin, Germany, 1988). [Google Scholar]
- J. Lægsgaard, N. A. Mortensen, J. R. Riischede, and A. Bjarklev, “Material effects in air–guiding photonic bandgap fibers” J. Opt. Soc. Am. B 20, 2046 – 2051 (2003). [CrossRef] [Google Scholar]
- J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Surface modes in air–core photonic band-gap fibers” Opt. Express 12, 1485 – 1496 (2004). [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.