Open Access
Issue
J. Eur. Opt. Soc.-Rapid Publ.
Volume 12, Number 1, 2016
Article Number 12
Number of page(s) 11
DOI https://doi.org/10.1186/s41476-016-0007-7
Published online 05 September 2016
  1. Pile D, Integrated photonics: Compact multiplexing. Nat. Photon. (2015) 9, 78. https://doi.org/10.1038/nphoton.2015.2 [NASA ADS] [CrossRef] [Google Scholar]
  2. Winzer PJ, Spatial multiplexing: The next frontier in network capacity scaling. Optical Communication (ECOC 2013), 39th European Conference and Exhibition on (2013) 1–4. [Google Scholar]
  3. Amphawan A, Review of optical multiple-input–multiple-output techniques in multimode fiber. Opt. Eng. (2011) 50, 102001. https://doi.org/10.1117/1.3631045 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, et al.Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science (2013) 340, 1545–1548. https://doi.org/10.1126/science.1237861 [Google Scholar]
  5. Carpenter J, Wilkinson TD, All Optical Mode-Multiplexing Using Holography and Multimode Fiber Couplers. J. Light. Technol. (2012) 30, 1978–1984. https://doi.org/10.1109/JLT.2012.2191586 [NASA ADS] [CrossRef] [Google Scholar]
  6. Amphawan A, Holographic mode-selective launch for bandwidth enhancement in multimode fiber. Opt. Exp. (2011) 19, 9056–9065. https://doi.org/10.1364/OE.19.009056 [CrossRef] [Google Scholar]
  7. Amphawan A, Binary spatial amplitude modulation of continuous transverse modal electric field using a single lens for mode selectivity in multimode fiber. J. Mod. Opt. (2012) 59, 460–469. https://doi.org/10.1080/09500340.2011.636486 [NASA ADS] [CrossRef] [Google Scholar]
  8. Jiangli D, Kin Seng C, Temperature-Insensitive Mode Converters With CO2−Laser Written Long-Period Fiber Gratings. IEEE Photon. Technol. Lett. (2015) 27, 1006–1009. https://doi.org/10.1109/LPT.2015.2405092 [NASA ADS] [CrossRef] [Google Scholar]
  9. Xiaoyong Z, Yiping W, Changrui L, Guolu Y, Jiangtao Z, Guanjun W, et al.Long Period Fiber Gratings Inscribed With an Improved Two-Dimensional Scanning Technique. IEEE Photon. J. (2014) 6, 1–8. [Google Scholar]
  10. Sakata H, Sano H, Harada T, Tunable mode converter using electromagnet-induced long-period grating in two-mode fiber. Opt. Fiber Technol. (2014) 20, 224–227. https://doi.org/10.1016/j.yofte.2014.02.003 [NASA ADS] [CrossRef] [Google Scholar]
  11. An L, Xi C, Al Amin A, Jia Y, Shieh W, Space-Division Multiplexed High-Speed Superchannel Transmission Over Few-Mode Fiber. J. Light. Technol. (2012) 30, 3953–3964. https://doi.org/10.1109/JLT.2012.2206370 [NASA ADS] [CrossRef] [Google Scholar]
  12. Gruner-Nielsen L, Nicholson JW, Stable mode converter for conversion between LP < inf > 01</inf > and LP < inf > 11</inf > using a thermally induced long period grating. Photonics Society Summer Topical Meeting Series, 2012 IEEE (2012) 214–215. https://doi.org/10.1109/PHOSST.2012.6280803 [CrossRef] [Google Scholar]
  13. Jiangli D, Kin Seng C, Mode-Locked Fiber Laser With Transverse-Mode Selection Based on a Two-Mode FBG. IEEE Photon. Technol. Lett. (2014) 26, 1766–1769. https://doi.org/10.1109/LPT.2014.2335892 [NASA ADS] [CrossRef] [Google Scholar]
  14. Gao Y, Sun J, Chen G, Sima C, Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings. Opt. Express (2015) 23, 9959–9967. https://doi.org/10.1364/OE.23.009959 [CrossRef] [Google Scholar]
  15. Amphawan A, Fazea Y and Ibrahim H: Investigation of Channel Spacing for Hermite-Gaussian Mode Division Multiplexing in Multimode Fiber. In: IEEE International Colloquium on Signal Processing and its Applications (CSPA), Kuala Lumpur (2015) [Google Scholar]
  16. Amphawan A, Fazea Y, Elshaikh M, Sulaiman AH, Othman AM, Othman IMF, Rahim AY, Pee CN, Space Division Multiplexing in Multimode Fiber for Channel Diversity in Data Communications. Advanced Computer and Communication Engineering Technology: Proceedings of ICOCOE 2015 (2016) ChamSpringer International Publishing355–363. https://doi.org/10.1007/978-3-319-24584-3_29 [CrossRef] [Google Scholar]
  17. Amphawan A, Fazea Y, Elfouly T, Abualsaud K, Effect of Vortex Order on Helical-Phased Donut Mode Launch in Multimode Fiber. Adv. Sci. Lett. (2015) 21, 3042–3045. https://doi.org/10.1166/asl.2015.6517 [CrossRef] [Google Scholar]
  18. Amphawan A, Fazea Y and Ibrahim H: Mode division multiplexing of spiral-phased donut modes in multimode fiber. In: International Conference on Optical and Photonic Engineering (icOPEN 2015), pp. 95240S-95240S-6. Singapore (2015) [Google Scholar]
  19. Fazea Y and Amphawan A: Mode Division Multiplexing of Helical-Phased LG Modes in MMF with Electronic Dispersion Compensation. Adv. Sci. Lett. 2016. in press [Google Scholar]
  20. Li H, Phillips DB, Wang X, Ho Y-LD, Chen L, Zhou X, et al.Orbital angular momentum vertical-cavity surface-emitting lasers. Optica (2015) 2, 547–552. https://doi.org/10.1364/OPTICA.2.000547 [NASA ADS] [CrossRef] [Google Scholar]
  21. Lin D, Xia K, Li J, Li R, Ueda K-i, Li G, et al.Efficient, high-power, and radially polarized fiber laser. Opt. Lett. (2010) 35, 2290–2292. https://doi.org/10.1364/OL.35.002290 [NASA ADS] [CrossRef] [Google Scholar]
  22. Dong J, Chiang KS, Transverse-mode switchable passively mode-locked fiber laser based on a two-mode fiber Bragg grating. 19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT) (2015) 65–67. [Google Scholar]
  23. Ndagano B, Brüning R, McLaren M, Duparré M, Forbes A, Fiber propagation of vector modes. Opt. Express (2015) 23, 17330–17336. https://doi.org/10.1364/OE.23.017330 [CrossRef] [Google Scholar]
  24. Zhao Z, Wang J, Li S, Willner AE, Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt. Lett. (2013) 38, 932–934. https://doi.org/10.1364/OL.38.000932 [NASA ADS] [CrossRef] [Google Scholar]
  25. Rumala YS, Leanhardt AE, Multiple-beam interference in a spiral phase plate. J. Opt. Soc. Am. B (2013) 30, 615–621. https://doi.org/10.1364/JOSAB.30.000615 [NASA ADS] [CrossRef] [Google Scholar]
  26. Rumala YS, Propagation of structured light beams after multiple reflections in a spiral phase plate. Opt Eng (2015) 54, 111306. https://doi.org/10.1117/1.OE.54.11.111306 [NASA ADS] [CrossRef] [Google Scholar]
  27. Lorenzo M, Ebrahim K, Sergei S, Bruno P, Enrico S, Eleonora N, et al.Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. (2011) 13, 064001. https://doi.org/10.1088/2040-8978/13/6/064001 [NASA ADS] [CrossRef] [Google Scholar]
  28. Riesen N, Love JD, Design of mode-sorting asymmetric Y-junctions. Appl. Opt. (2012) 51, 2778–2783. https://doi.org/10.1364/AO.51.002778 [NASA ADS] [CrossRef] [Google Scholar]
  29. Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C, On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt. Express (2013) 21, 10376–10382. https://doi.org/10.1364/OE.21.010376 [CrossRef] [Google Scholar]
  30. Veldhuis GJ, Berends JH, Lambeck PV, Design and characterization of a mode-splitting &Psi;-junction. J. Light. Technol. (1996) 14, 1746–1752. https://doi.org/10.1109/50.507953 [NASA ADS] [CrossRef] [Google Scholar]
  31. Amphawan A, Samman NMAA and Nedniyom B: Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. J. Mod. Opt. 2013;60 [Google Scholar]
  32. Stern B, Zhu X, Chen CP, Tzuang LD, Cardenas J, Bergman K, et al.On-chip mode-division multiplexing switch. Optica (2015) 2, 530–535. https://doi.org/10.1364/OPTICA.2.000530 [CrossRef] [Google Scholar]
  33. Amphawan A, Mishra V, Nisar K, Nedniyom B, Real-time holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. J. Mod. Opt. (2012) 50, 1745–1752. https://doi.org/10.1080/09500340.2012.739713 [NASA ADS] [CrossRef] [Google Scholar]
  34. Amphawan A, Binary encoded computer generated holograms for temporal phase shifting. Opt. Exp. (2011) 19, 23085–23096. https://doi.org/10.1364/OE.19.023085 [CrossRef] [Google Scholar]
  35. Carpenter, J and Wilkinson, TD: Precise modal excitation in multimode fibre for control of modal dispersion and mode-group division multiplexing. In: European Conf. and Exposition on Optical Communications (ECOC), p. We.10.P1. Geneva (2011) [Google Scholar]
  36. Arik SO, Kahn JM, Ho K-P, MIMO Signal Processing for Mode-Division Multiplexing: An overview of channel models and signal processing architectures. IEEE Signal. Proc. Mag. (2014) 31, 25–34. https://doi.org/10.1109/MSP.2013.2290804 [CrossRef] [Google Scholar]
  37. Neng B, Guifang L, Adaptive Frequency-Domain Equalization for Mode-Division Multiplexed Transmission. IEEE Photon. Technol. Lett. (2012) 24, 1918–1921. https://doi.org/10.1109/LPT.2012.2218802 [CrossRef] [Google Scholar]
  38. Arık SÖ, Askarov D, Kahn JM, Adaptive Frequency-Domain Equalization in Mode-Division Multiplexing Systems. J. Light. Technol. (2014) 32, 1841–1852. https://doi.org/10.1109/JLT.2014.2303079 [CrossRef] [Google Scholar]
  39. Brüning R, Ngcobo S, Duparré M, Forbes A, Direct fiber excitation with a digitally controlled solid state laser source. Opt. Lett. (2015) 40, 435–438. https://doi.org/10.1364/OL.40.000435 [CrossRef] [Google Scholar]
  40. Sun B, Wang A, Xu L, Gu C, Zhou Y, Lin Z, et al.Transverse mode switchable fiber laser through wavelength tuning. Opt. Lett. (2013) 38, 667–669. https://doi.org/10.1364/OL.38.000667 [NASA ADS] [CrossRef] [Google Scholar]
  41. Dong J, Chiang KS, Mode-locked fiber laser with transverse-mode selection based on a two-mode FBG. IEEE Photon. Technol. Lett. (2014) 26, 1766–1769. https://doi.org/10.1109/LPT.2014.2335892 [NASA ADS] [CrossRef] [Google Scholar]
  42. Sun B, Wang A, Gu C, Chen G, Xu L, Chung D, et al.Mode-locked all-fiber laser producing radially polarized rectangular pulses. Opt. Lett. (2015) 40, 1691–1694. https://doi.org/10.1364/OL.40.001691 [NASA ADS] [CrossRef] [Google Scholar]
  43. Dong J, Chiang KS, Temperature-Insensitive Mode Converters With CO 2-Laser Written Long-Period Fiber Gratings. IEEE Photon. Technol. Lett. (2015) 27, 1006–1009. https://doi.org/10.1109/LPT.2015.2405092 [NASA ADS] [CrossRef] [Google Scholar]
  44. Jung, Y-M, Li, Z, Wong, NHL, Daniel, J, Sahu, JK, Alam, S, et al: Spatial mode switchable, wavelength tunable erbium doped fiber laser incorporating a spatial light modulator. In: Optical Fiber Communication Conference, p. Tu3D.4. San Francisco, California; (2014) [Google Scholar]
  45. Amphawan A, Holographic mode-selective launch for bandwidth enhancement in multimode fiber. Opt. Express (2011) 19, 9056–9065. https://doi.org/10.1364/OE.19.009056 [NASA ADS] [CrossRef] [Google Scholar]
  46. Amphawan A, Backlighting for alignment of optics in first diffraction order path. Int. Conf. on Applications of Optics and Photon (2011) 8001–237. [Google Scholar]
  47. Amphawan A and Brien DO. Holographic mode field generation for a multimode fiber channel, "International Conference on Photonics, 2010, pp. 1–4. [Google Scholar]
  48. Amphawan A, Nedniyom B, Al Samman NMA, Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. J. Mod. Opt. (2013) 60, 1675–1683. https://doi.org/10.1080/09500340.2013.827249 [NASA ADS] [CrossRef] [Google Scholar]
  49. Robert B, Bienvenu N, Melanie M, Siegmund S, Jens K, Michael D, et al.Data transmission with twisted light through a free-space to fiber optical communication link. J. Opt. (2016) 18, 03LT01. https://doi.org/10.1088/2040-8978/18/3/03LT01 [NASA ADS] [CrossRef] [Google Scholar]
  50. May AR, Zervas MN, Few-mode fibers with improved mode spacing. Optical Communication (ECOC), 2015 European Conference on (2015) 1–3. https://doi.org/10.1109/ECOC.2015.7341706 [Google Scholar]
  51. Chen M, Dholakia K, Mazilu M, Is there an optimal basis to maximise optical information transfer?. Sci. Rep. (2016) 6, 22821. https://doi.org/10.1038/srep22821 [NASA ADS] [CrossRef] [Google Scholar]
  52. Arrizón V, Ruiz U, Carrada R, González LA, Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A (2007) 24, 3500–3507. https://doi.org/10.1364/JOSAA.24.003500 [CrossRef] [Google Scholar]
  53. Synopsis. OptSim. ed, 2010. [Google Scholar]
  54. Mathworks. MATLAB. vol. 2013, 2013 ed. Natick, MA, USA, 2013. [Google Scholar]
  55. Pampaloni F, Enderlein J, Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes. J. Opt. Soc. Am. A (2004) 21, 1553–1558. https://doi.org/10.1364/JOSAA.21.001553 [NASA ADS] [CrossRef] [Google Scholar]
  56. Abramowitz M, Stegun IA, Handbook of mathematical functions : with formulas, graphs and mathematical tables (1973) New YorkDover Publications[9th Dover printing, with additional corr.] [Google Scholar]
  57. Amphawan A and Alabdalleh WA. Simulation of Properties of the Transverse Modal Electric Field of an Infinite Parabolic Multimode Fiber. Microw Opt Lett. 2012;54:1362–1365. [Google Scholar]
  58. Snyder AW, Love JD, Optical waveguide theory (1983) LondonChapman and Hall [Google Scholar]
  59. Olshansky R, Oaks SM, Differential mode attenuation measurements in graded-index fibers. Appl. Opt. (1978) 17, 1830–1835. https://doi.org/10.1364/AO.17.001830 [NASA ADS] [CrossRef] [Google Scholar]
  60. Yadlowsky J, Mickelson AR, Distributed loss and mode coupling and their effect on time-dependent propagation in multimode fibers. Appl. Opt. (1993) 32, 6664–77. https://doi.org/10.1364/AO.32.006664 [NASA ADS] [CrossRef] [Google Scholar]
  61. Amphawan A, O'Brien D, Modal decomposition of output field for holographic mode field generation in a multimode fiber channel. Photonics (ICP), 2010 International Conference on (2010) 1–5. [Google Scholar]
  62. Shi K, Feng F, Gordon G, Wilkinson T and Thomsen B. SLM-based Mode Division Multiplexing System with 6× 6 Sparse Equalization. IEEE Photon. Tech. Lett., vol.27, pp. 1687-1690 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.