Bispectral Optical Cavity based on Twin Metamirrors

Liam Shelling Neto1,2,3,*, Johannes Dickmann1,2,3, Steffen Sauer1,2,3,4, and Stefanie Kroeker1,3,4

1Technical University of Braunschweig, Institute for Semiconductor Technology, Hans-Sommer-Str. 66, Braunschweig, Germany
2CAVITY technologies UG (haftungsbeschränkt), Wilhelmsgarten 3, Braunschweig, Germany
3Laboratory for Emerging Nanometrology (LENA), Langer Kamp 6a/b, Braunschweig, Germany
4Physikalisch-Technische Bundesanstalt, Bundesallee 100, Braunschweig, Germany

Abstract. In this work, we introduce a new bispectral optical cavity concept for which we design twin pairs of highly reflective, ultra-low noise metamirrors. Metasurfaces, artificial structures composed of periodic or quasi-periodic arrays of nanostructures, offer unprecedented control over light properties, paving the way for new applications in areas from high-precision optical metrology to quantum science. Custom phase and an ultra-high reflection coefficient make these metasurfaces an ideal candidate to surpass traditional multilayer mirrors as metamirrors in precision interferometry, particularly by also minimizing thermal noise. The focusing metamirrors designed in this study expect to reflect 99.95% and 99.96% of the incoming light at both, 1064 nm and 1550 nm wavelength. Their planar counterparts even reach theoretical reflectivities of 99.999% (1064 nm) and 99.9995% (1550 nm). These specialized metamirrors enable bispectral low-noise optical cavities, which would reduce the number of cavities in optical experiments or could be used as a versatile transfer cavity for frequency locking.

Keywords:
Metasurface, Metamirror, Optical Cavity, High-Precision Optical Metrology

1 Introduction

High-precision optical metrology hinges on the unparalleled frequency stability provided by ultra-stable laser systems. This ability to provide minimal frequency fluctuations over time has enabled research of the most fundamental laws of nature, such as variations of the fine structure constant [1] and validation tests of special relativity [2], among others. In addition, the search for gravitational waves is intrinsically linked to the use of ultra-stable lasers in interferometry [3, 4]. Nevertheless, the bottleneck of these laser systems is the thermal noise emanating from the cavities’ mirror coatings [5].

Metasurfaces, i.e. micro-structured surfaces, offer a low-noise alternative to traditional Bragg mirrors by leveraging photonic resonances as the driving mechanism to achieve unprecedented reflectivities [6–9]. Essentially, the right choice of period \(\Lambda \) and duty cycle \(f \) can limit the number of propagating Bloch modes to two. By then carefully changing the geometric parameters, the modes interfere constructively in the reflection and destructively in transmission [10]. Such metamirrors not only shape the attribute is crucial, as stable optical cavities necessitate at least one focusing mirror [12]. Otherwise, divergence would cause the light to eventually leave the cavity after a few round-trips. It is important to note that the mirror’s focal length does not restrict the cavity’s length. In fact, typical ultra-stable cavities are constructed with lengths spanning several tens of centimeters [3, 13]. Our objective is to achieve longer focal lengths, which will expand the optical mode diameter, thereby reducing thermal noise [14]. Metaatoms, which constitute the metasurface, are central to these advanced functionalities [15–19].

In our prior work [11], we demonstrated the potential of a tandem neural network for the inverse design of metaatoms. Although effective, the present work proposes...
Figure 2: Schematic of the cross-shaped metaatom with variable lateral height h, period P, and parameters L_x and L_y. The material system is chosen to be amorphous silicon (a-Si) on Fused Silica (SiO$_2$).

2 Setting Fixed Parameters

We commence by employing an amorphous Silicon (a-Si) metaatom with a cross-shape geometry with perfect periodicity atop a silicon dioxide (SiO$_2$) substrate, as depicted in Fig.2. The refractive indices of both materials are assumed to be $n_{a-Si-1064} = 3.536$, $n_{a-Si-1550} = 3.441$, $n_{SiO2-1064} = 1.450$, and $n_{SiO2-1550} = 1.444$ for both 1064 nm and 1550 nm, respectively. This configuration is characterized by four key parameters: L_x, L_y, h, and P. The parameters L_x and L_y are reserved for subsequent phase and amplitude modulation, while h and P are constants for both mirrors. Given that both metamirrors will share the same substrate and material composition, the structural height h is chosen to be uniform for the two target wavelengths. However, while the period P may vary between the designs of the two metamirrors, it must remain constant within each mirror to enable the integration of various metaatoms. These individual metaatoms, each producing distinct optical responses, are assembled to create the final metamirror structure.

We utilize a Python-based Rigorous Coupled Wave Analysis package (RCWA)\cite{37} to evaluate metaatom configurations at 1064 nm and 1550 nm with regard to their phase ϕ and reflectivity R. While a global optimization algorithm could theoretically identify suitable parameters, it poses the risk of converging to highly sensitive, narrow-band solutions that tend to be vulnerable to fabrication errors. Hence, a computationally manageable parametric sweep is performed of the three parameters $h \in [0.3, 0.5] \mu m$, $P_{1064} \in [0.45, 0.6] \mu m$, and $P_{1550} \in [0.75, 0.95] \mu m$ while keeping the metaatom shape constant. These boundaries for the period are determined following equation [38]:

$$\frac{\lambda_i}{n_{sub,j} \sin \theta_{target}} < P_i < \frac{\lambda_i}{n_{sub,j}}, \quad i \in \{1064, 1550\},$$

for the wavelength λ_i, the refractive index of the substrate n_{sub}, and the propagation angle of the first diffraction order θ_{target}, i.e. 90°. Value ranges for the structure height are dictated by the effective wavelength inside the coating material:

$$\lambda_{eff,j} = \frac{\lambda_i}{n_{coating,j}}, \quad i \in \{1064, 1550\}.$$

Here, $n_{coating}$ refers to the refractive index of the mirror coating. These results are visualized in Fig.3 (top). To pinpoint the parameter zones achieving high reflectivity at both wavelengths, we impose a reflectivity threshold of 99.9%. Figure 3 (bottom) reveals a distinct zone meeting these criteria, from which we select $h = 395 \mu m$, $P_{1064} = 555 \mu m$, and $P_{1550} = 893 \mu m$.

3 Navigating the Design Space

We proceed to simulate combinations of $L_x, L_y \in [0.1, 0.9]$ (normalized to P) to form a design-response dataset (see Fig.4b), wherein each pair embodies a metaatom with...
Reflectivity at 1064 nm
Reflectivity at 1550 nm

Figure 3: RCWA simulated reflectivity for 1064 nm (left) and 1550 nm (right) of the parametric sweep of the three parameters $h \in [0.3, 0.5] \mu m$, $P_{1064} \in [0.45, 0.6] \mu m$, and $P_{1550} \in [0.75, 0.95] \mu m$ with a fixed metaatom cross. Top: Raw Data, Bottom: Reflectivity threshold of 99.9 % applied to the data.

respectable reflectivity and phase values based on L_x and L_y. To this end, we first identify a suitable flat-phase metaatom by focusing solely on reflectivity values at both 1064 nm and 1550 nm, attaining theoretical reflectivities of 99.9999 % for 1064 nm and 99.9995 % for 1550 nm, respectively. These two metaatom species uniformly cover the two planar metamirrors for each wavelength.

While the straightforward tactic for achieving the desired phase profile would be to cherry-pick metaatoms that fit best the target phase, this could cause abrupt changes in structural parameters, thereby breaching the periodic boundary conditions assumed during simulation. In this study, we adopt a pathfinding strategy to mitigate these neighbor coupling effects [39, 40]. The pathfinding algorithm requires suitable start- and endpoints, hence, we first filter the dataset with a reflectivity threshold of 99.9 %, as shown in Fig. 4a), ensuring that high-reflectivity zones are retained. Utilizing Python’s scikit-image package [41], we label diagonally connected areas (see Fig. 4c, d) to subsequently identify the region offering the largest phase variance.

This region aids the pathfinding algorithm in optimizing phase flexibility across the metasurface, avoiding the abrupt transitions typical of a cherry-picking approach.

Figure 5 shows the optimal path found by the pathfinding algorithm that will act as the ground truth data to render the whole metamirror later on. Additionally, we implemented a metric M to quantify relative changes in the design parameters L_x and L_y.

Figure 6 validates the superiority of pathfinding over cherry-picking in minimizing M and therefore possible neighboring coupling effects. The phase gradient along the metamirror’s diagonal is illustrated in Fig. 7, emulating a parabolic mirror of dimensions $3 \times 3 \text{mm}^2$ and a focal length of 6 m. Despite small deviations from the optimum, the phase profile fits the ideal case of a conventional parabolic mirror. The inset shows the discrete nature of the metamirror caused by individual metaatoms and how the pathfinder chose different step-widths throughout the surface. This underscores the advantage of metamirrors: they enable the design of large focal lengths without the need for intricate polishing, as traditional mirrors do. It is important to note that the precise fabrication of nanostructures on curved surfaces introduces its own set of unique challenges. The designed focusing metamirrors exhibit mean reflectivities of 99.95 % and 99.96 % for 1064 nm and 1550 nm, respectively. That is, assuming equal illumination across the entire metamirror. In a more detailed and realistic scenario, the reflectivity of each metaatom should be considered in conjunction with the intensity of light at its specific location. For instance, with a Gaussian illumination profile featuring a beam waist of 800 μm, we observe an intensity-weighted mean reflectivity increase to 99.96 % and 99.97 % for wavelengths of 1064 nm and 1550 nm, respectively. These values are calculated by considering the spatial variation in illumination across the metamirror surface. Combining these focusing metamirrors with their planar counterparts allows for the calculation of the expected finesse F, as described by [42]:

$$M_i = \left| \frac{L_{x,i+1} - L_{x,i}}{L_{x,i}} \times 100 \right| + \left| \frac{L_{y,i+1} - L_{y,i}}{L_{y,i}} \times 100 \right|.$$

(3)
Figure 5: Calculated phase and reflectivity maps with a threshold of 99.9 % applied to the dataset. The black dotted line represents the optimal path found by the pathfinding algorithm.

\[\mathcal{F} = \frac{\pi \sqrt{R}}{1 - R} \]

(4)

where \(R = \sqrt{R_1 \cdot R_2} \) represents the geometric mean of the reflectivities of the individual mirrors. Applying eq. (4) results in a calculated finesse of 15,526 for 1064 nm and 20,911 for 1550 nm. These values theoretically exceed the previous record measurements [9]. However, in [9], the metamirror was designed for a reflectivity of nearly 100 %, yet the measurement revealed a reflectivity of only 99.95 %. It is essential to note that current fabrication limitations likely impede achieving such high-performance metamirrors. Future advancements in manufacturing precision are necessary to realize metamirrors capable of reflecting 99.997 % of light, not only theoretically but also practically, and to achieve a finesse surpassing 100,000, as per eq. (4). The implications of reaching such high finesse values could be significant, potentially opening new avenues in photonic applications and research in high-precision optical metrology.

4 Electric Field Distribution within the Metaatoms

To gain a deeper understanding of the physics underlying the highly reflective metaatoms developed in the previous section, we now shift our focus to an in-depth analysis of individual metaatoms. Considering the dimensions of the metamirrors and the period of their respective metaatoms, we can determine that the metamirror designed for a wavelength of 1064 nm comprises 2703 × 2703 metaatoms, while the one for 1550 nm consists of 1680 × 1680 metaatoms. Across the diagonal of each metamirror (from the center to the edge, leveraging symmetry), we select a linearly spaced sample of nine metaatom designs. These designs are presented side-by-side in Fig. 8, facilitating initial observations of their topology. Firstly, the metaatoms for 1064 nm exhibit more pronounced variations than those for 1550 nm, as corroborated by Fig. 6. Secondly, it is observed that the metaatoms for 1064 nm transition from square shapes at the center to cross-like shapes towards the edge of the metamirror, whereas the reverse trend is observed for 1550 nm. Furthermore, we select three distinctive metaatom designs for each wavelength for simulation in COMSOL Multiphysics[43]. The aim is to obtain detailed electric field distributions. These electric field distributions for all three spatial planes are depicted in Fig. 8, positioned beneath their corresponding metaatom visualizations. The observed mode shapes appear relatively simplistic and thus more robust. This can be attributed to the low height of the structures, which impedes the development of higher-order modes. It is noted that the majority of the light fields are concentrated within the metaatom structures. Nevertheless, the fields are not
Conflict of Interest

The authors declare no conflicts of interest related to the research presented in this paper. While some of the authors are affiliated with CAVITY technologies, there is no direct connection or financial arrangement between the startup and the research conducted at Technical University of Braunschweig or Physikalisch-Technische Bundesanstalt presented in this work. The startup’s activities are unrelated to the specific focus of this paper.

Acknowledgments

L. S. N. would like to extend his heartfelt thanks to his friends from the ‘St. Jürgens am Strande’ club for their support and encouragement.

Funding

The authors gratefully acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers – 390837967. J.D. and S.K also acknowledge partial support by European Association of National Metrology Institutes. This project (20FUN08 NEXTLASERS) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Data Availability Statement

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Author Contribution Statement

All authors made significant contributions to this work.

References
